1
|
Cheng Y, Zheng Y, Zhou C, Huang S, Sun Y, Yan H, Cao J, Pan D, Xia Q. Mechanistic insights into the modulation of myofibrillar protein microstructure and physicochemical properties in conditioned goose using pulsed electric field treatment. Int J Biol Macromol 2025; 310:143540. [PMID: 40294679 DOI: 10.1016/j.ijbiomac.2025.143540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
Compact microstructure of goose myofibrillar proteins (MP) negatively affects texture and flavor properties, as thick, large myofibers result in lower tenderness and limited capacity to absorb water and flavor compounds. This study proposes a strategy to regulate the MP microstructure and physicochemical qualities of conditioned meat by altering protonation signaling during pulsed electric field (PEF) processing. The results demonstrated that enhanced protonation during PEF significantly improved the meat quality. MP solubility increased by 4.91-9.03 %, while particle size decreased by 32.56-52.85 % compared to PEF alone or deprotonated conditions, attributed to protonation enhanced dissociation-depolymerization and unfolding of MP. Histological observations via the staining and electron microscopy revealed that enhanced protonation disrupted the muscle fiber arrangement and MP network. The tertiary structure of MP was altered, exposing internal hydrophobic regions and releasing volatile flavor compounds, which increased the headspace concentration of volatile compounds in goose meat during prolonged PEF treatment, thus helping enhance the complexity of meat flavor and the perception of characteristic aromas. These results demonstrated the dual effects of enhanced protonation and deprotonation during PEF treatments, which synergistically drove structural and functional changes in MP. The study validated the feasibility of altering protonation signaling during PEF to modulate meat processing characteristics.
Collapse
Affiliation(s)
- Yan Cheng
- College of Food Science and Technology, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Changyu Zhou
- College of Food Science and Technology, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Siqiang Huang
- College of Food Science and Technology, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- College of Food Science and Technology, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Hongbing Yan
- Hangzhou Dakang Cured Food Co., Ltd., Hangzhou 311122, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Daodong Pan
- College of Food Science and Technology, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Qiang Xia
- College of Food Science and Technology, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Zhang C, Wang J, Ma Z, Zhao C, Piao C, Cui M, Li H, Li T, Mu B, Li G. Comprehensive analysis of the effects of cooking conditions on the quality, sensory characteristics, and flavor profile of glutinous rice chicken, a Chinese traditional poultry meat product. Food Chem X 2024; 24:101868. [PMID: 39974714 PMCID: PMC11838098 DOI: 10.1016/j.fochx.2024.101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 02/21/2025] Open
Abstract
This study investigated the effects of cooking conditions on cooking loss, texture, and sensory attributes of glutinous rice chicken (GRC), a popular Chinese poultry dish. We compared the nutritional and sensory profiles of GRC prepared under optimal conditions (GRC-OP) with those of a commercial product (CG). Cooking time, power, and pressure significantly affected the shear force, hardness, and sensory qualities of GRC. The optimal parameters were determined using an orthogonal design: 20 min cooking time, 1000 watts power, and 60 kPa pressure. Gas chromatography/mass spectrometry and E-nose analyses showed that GRC-OP had a volatile profile similar to that of CG but with higher levels of specific compounds, including heptanal, 2-heptenal, octanal, hexanol, octanol, and 1-nonen-4-ol. GRC-OP also exhibited superior umami, salty, and rich tastes, and higher amino acid content, particularly Asp, Glu, Thr, Ser, Ala, Val, Met, and Ile. These findings provide crucial data for optimizing the quality and nutritional value of GRC in the meat industry.
Collapse
Affiliation(s)
- Cenyue Zhang
- College of Agriculture, Yanbian University, Yanji 133000, China
- Food Research Center, Yanbian University, Yanji 133000, China
- Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Yanbian University, Yanji 133000, China
| | - Juan Wang
- College of Agriculture, Yanbian University, Yanji 133000, China
- Food Research Center, Yanbian University, Yanji 133000, China
- Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Yanbian University, Yanji 133000, China
| | - Ziting Ma
- College of Agriculture, Yanbian University, Yanji 133000, China
- Food Research Center, Yanbian University, Yanji 133000, China
- Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Yanbian University, Yanji 133000, China
| | - Changcheng Zhao
- School of Life Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Chunxiang Piao
- College of Agriculture, Yanbian University, Yanji 133000, China
- Food Research Center, Yanbian University, Yanji 133000, China
- Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Yanbian University, Yanji 133000, China
| | - Mingxun Cui
- College of Agriculture, Yanbian University, Yanji 133000, China
- Food Research Center, Yanbian University, Yanji 133000, China
- Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Yanbian University, Yanji 133000, China
| | - Hongmei Li
- College of Agriculture, Yanbian University, Yanji 133000, China
- Food Research Center, Yanbian University, Yanji 133000, China
- Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Yanbian University, Yanji 133000, China
| | - Tingyu Li
- College of Agriculture, Yanbian University, Yanji 133000, China
- Food Research Center, Yanbian University, Yanji 133000, China
- Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Yanbian University, Yanji 133000, China
| | - Baide Mu
- Food Research Center, Yanbian University, Yanji 133000, China
| | - Guanhao Li
- College of Agriculture, Yanbian University, Yanji 133000, China
- Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Yanbian University, Yanji 133000, China
| |
Collapse
|
3
|
Yue 岳珂 K, Cao 曹芹芹 QQ, Shaukat A, Zhang 张才 C, Huang 黄淑成 SC. Insights into the evaluation, influential factors and improvement strategies for poultry meat quality: a review. NPJ Sci Food 2024; 8:62. [PMID: 39251637 PMCID: PMC11385947 DOI: 10.1038/s41538-024-00306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Poultry meat, an essential source of animal protein, requires stringent safety and quality measures to address public health concerns and growing international attention. This review examines both direct and indirect factors that compromise poultry meat quality in intensive farming systems. It highlights the integration of rapid and micro-testing with traditional methods to assess meat safety. The paper advocates for adopting probiotics, prebiotics, and plant extracts to improve poultry meat quality.
Collapse
Affiliation(s)
- Ke Yue 岳珂
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Qin-Qin Cao 曹芹芹
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, 430070, China
| | - Cai Zhang 张才
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shu-Cheng Huang 黄淑成
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Roobab U, Chen BR, Madni GM, Tong ZG, Zeng XA, Abdi G, Hussain S, Aadil RM. Evaluation of ultrasound and pulsed electric field combinations on the cooking Losses, texture Profile, and Taste-Related amino acids of chicken breast meat. ULTRASONICS SONOCHEMISTRY 2024; 107:106919. [PMID: 38795569 PMCID: PMC11144803 DOI: 10.1016/j.ultsonch.2024.106919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The search to improve the quality of meat while maintaining its nutritional value and flavor profile has driven the investigation of emerging clean-label non-thermal technologies in the field of meat processing. Ultrasound (US) and pulsed electric field (PEF) treatments have emerged as promising tools for producing high-quality meat products. This study investigated the combined effects of ultrasound and PEF on chicken breast meat quality, focusing on cooking loss, texture, and taste-related amino acids. Ultrasound (24.5 kHz, 300 W, 10 min) combined with PEF for 30 s (1.6, 3.3, and 5.0 kV/cm as US + PEF 1, US + PEF 3, and US + PEF 5, respectively) significantly reduced cooking losses (up to 28.78 %), potentially improving the product yield. Although US + PEF significantly (p < 0.05) affected pH, particularly at a higher PEF intensity (5 kV/cm), the overall color appearance of the treated meat remained unchanged. The combined treatments resulted in a tenderizing effect and decreased meat hardness, adhesiveness, and chewiness. Interestingly, US + PEF with increasing PEF intensity (1.6 to 5.0 kV/cm) led to a gradual increase in taste-related amino acids (aspartic acid, glutamic acid, etc.), potentially enhancing flavor. FTIR spectra revealed alterations in protein and lipid structures following treatment, suggesting potential modifications in meat quality. Scanning electron microscopy (SEM) revealed significant changes in the texture and structure of US + PEF-treated meat, depicting structural disruptions. Furthermore, Pearson's correlation analysis and principal component analysis (PCA) revealed a clear relationship between the physicochemical characteristics, free amino acids, color, and texture attributes of chicken meat. By optimizing treatment parameters, US + PEF could offer a novel approach to improve chicken breast meat quality.
Collapse
Affiliation(s)
- Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551 Al‑Ain, United Arab Emirates
| | - Bo-Ru Chen
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, China; Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong, 528225, China
| | - Ghulam Muhammad Madni
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Zhang Guo Tong
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, China; Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong, 528225, China.
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| | - Shahzad Hussain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| |
Collapse
|
5
|
Roobab U, Chen BR, Madni GM, Guo SM, Zeng XA, Abdi G, Aadil RM. Enhancing chicken breast meat quality through ultrasonication: Physicochemical, palatability, and amino acid profiles. ULTRASONICS SONOCHEMISTRY 2024; 104:106824. [PMID: 38412679 PMCID: PMC10907868 DOI: 10.1016/j.ultsonch.2024.106824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Ultrasonication, a technology that employs high-frequency sound waves, has demonstrated potential for modifying the properties of various food items. However, the effect of ultrasonication on chicken meat, particularly concerning amino acid composition and flavor enhancement, has not been sufficiently investigated. The objective of this research was to bridge the gap in the literature by exploring the impact of various ultrasonic treatments at varying power levels (300, 500, and 800 W) and durations (10 and 30 min) on the physicochemical characteristics, texture, and amino acid profile of chicken breast meat, with a focus on improving its palatability and flavor. The results indicated that ultrasonication reduced the pH and cooking loss, as well as hardness and chewiness while simultaneously increasing lightness and yellowness values of chicken breast meat. Moreover, ultrasonication enhanced the amounts of essential amino acids, including glutamic acid, alanine, and glycine as well as the free amino acid content, which gives meat its savory and umami flavor. Furthermore, the results demonstrated significant changes in the texture and structure, as demonstrated by the scanning electron microscopy (SEM) images, and in chemical makeup of chicken breast meat, as indicated by the FTIR spectra. These modifications in the molecular and microstructural characteristics of meat, as induced by ultrasonication, may contribute to the enhancement of tenderness, juiciness, and overall palatability.
Collapse
Affiliation(s)
- Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Bo-Ru Chen
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, China; Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, China
| | - Ghulam Muhammad Madni
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Shi-Man Guo
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, China.
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, 75169, Bushehr, Iran.
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
6
|
Wu G, Qiu X, Jiao Z, Yang W, Pan H, Li H, Bian Z, Geng Q, Wu H, Jiang J, Chen Y, Cheng Y, Chen Q, Chen S, Man C, Du L, Li L, Wang F. Integrated Analysis of Transcriptome and Metabolome Profiles in the Longissimus Dorsi Muscle of Buffalo and Cattle. Curr Issues Mol Biol 2023; 45:9723-9736. [PMID: 38132453 PMCID: PMC10741837 DOI: 10.3390/cimb45120607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Buffalo meat is gaining popularity for its nutritional properties, such as its low fat and cholesterol content. However, it is often unsatisfactory to consumers due to its dark color and low tenderness. There is currently limited research on the regulatory mechanisms of buffalo meat quality. Xinglong buffalo are raised in the tropical Hainan region and are undergoing genetic improvement from draught to meat production. For the first time, we evaluated the meat quality traits of Xinglong buffalo using the longissimus dorsi muscle and compared them to Hainan cattle. Furthermore, we utilized a multi-omics approach combining transcriptomics and metabolomics to explore the underlying molecular mechanism regulating meat quality traits. We found that the Xinglong buffalo had significantly higher meat color redness but lower amino acid content and higher shear force compared to Hainan cattle. Differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were identified, with them being significantly enriched in nicotinic acid and nicotinamide metabolic and glycine, serine, and threonine metabolic pathways. The correlation analysis revealed that those genes and metabolites (such as: GAMT, GCSH, PNP, L-aspartic acid, NADP+, and glutathione) are significantly associated with meat color, tenderness, and amino acid content, indicating their potential as candidate genes and biological indicators associated with meat quality. This study contributes to the breed genetic improvement and enhancement of buffalo meat quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lianbin Li
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (G.W.); (X.Q.); (Z.J.); (W.Y.); (H.P.); (Q.G.); (H.W.); (Y.C.); (S.C.); (L.D.)
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (G.W.); (X.Q.); (Z.J.); (W.Y.); (H.P.); (Q.G.); (H.W.); (Y.C.); (S.C.); (L.D.)
| |
Collapse
|
7
|
Wang Z, Nie T, Zhang H, Wang W, Chen H, Wang S, Sun B. Correlation Analysis between Volatile Compounds and Quality Attributes in Pork Tenderloin in Response to Different Stir-Frying Processes. Foods 2023; 12:4299. [PMID: 38231781 DOI: 10.3390/foods12234299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 01/19/2024] Open
Abstract
Volatile compounds and physicochemical properties of meat are significantly changed by cooking processes. This study explored the influence of different stir-frying temperatures and times on the dynamic changes of the physicochemical characteristics and volatiles of pork tenderloin and determined the correlation between them. Results showed that time played more of a role than temperature. At the same temperature, the water content decreased (p < 0.05) and the cooking loss increased (p < 0.05) with stir-frying time extending. The L* value and the b* value showed first an increasing and then decreasing trend (p < 0.05), while the a* value significantly increased (p < 0.05). The higher the cooking temperature of sample, the faster the indexes changed. In stir-fried samples, 50 volatiles were identified. Correlation analysis showed that among the quality attributes, b* value and water content had the strongest impact on volatiles. The water content was negatively correlated with most of the compounds attributed to the desired aroma of stir-fried samples, while the correlation between the b* value and these volatiles was positive. Hence, changes in the types and contents of volatiles in stir-fried pork tenderloin could be predicted by detection of b* value and water content.
Collapse
Affiliation(s)
- Ziqiang Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Tianjie Nie
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Huiying Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Wenqian Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Shuqi Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
8
|
Zheng C, Cai N, Huang C, Huang Y, Zou J, Zhang G, Fei P. Evaluation of amidated pectin as fat substitutes for minced chicken breast: Physicochemical properties and edible quality. Food Res Int 2023; 173:113371. [PMID: 37803709 DOI: 10.1016/j.foodres.2023.113371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 10/08/2023]
Abstract
An investigation was conducted to assess the gelation characteristics of amino acid amidated pectin and its subsequent influence on the quality of minced chicken breast (MCB) when employed as a lipid substitute. Through experimentation, it was evidenced that amidated pectin, such as glycine amidated pectin (AP@Gly), glutamic amidated pectin (AP@Glu), and lysine amidated pectin (AP@Lys), demonstrated superior viscosity and gelation capacity in comparison to their native pectin (PE) counterpart. In contrast to PE, amidated pectin samples exhibited the potential to form high-strength hydrogels under conditions of minimal restriction. Additionally, evaluations conducted on all samples established that MCB samples enriched with pectin and amidated pectin demonstrated superior water retention capability. Before thermal processing, MCB samples fortified with amidated pectin showcased higher hardness and L* values in comparison to PE and the control group. However, upon thermal processing, no significant divergence was found in the chroma and texture profile analysis (TPA) attributes across all MCB samples, and the electronic tongue sensory evaluation was closely aligned with the control group. This evidence substantiates the effectiveness of amidated pectin samples as viable lipid substitutes in MCB products.
Collapse
Affiliation(s)
- Chenmin Zheng
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Na Cai
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Chunchun Huang
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Yufan Huang
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Jinmei Zou
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Guoguang Zhang
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Peng Fei
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China.
| |
Collapse
|