1
|
Hussain SA, Wani SA, Rafeh S, Adil S, Sofi AH, Ghamry HI, Wani M. Enhancing Meat Emulsion Quality and Storage Stability During Refrigeration Using Thyme and Oregano Essential Oil Nanoparticles. Foods 2025; 14:1076. [PMID: 40232075 PMCID: PMC11942058 DOI: 10.3390/foods14061076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
The ability to efficiently store raw emulsion and market it as a ready-to-cook convenience meat product would be extremely advantageous to society and the global meat business. With this innovation, consumers may easily make a range of fresh emulsion-based meat products, saving time and labour. The current study was thus designed with the goal of improving the quality and storage stability of meat emulsions by using chitosan-based thyme (Thymus vulgaris) and oregano (Origanum vulgare) essential oil nanoparticles as natural preservatives. The treatments included the following: T0-control; T1-emulsion added with chitosan nanoparticles @ 500 ppm; T2-emulsion added with thyme essential oil nanoparticles @ 500 ppm; T3-emulsion added with oregano essential oil nanoparticles @ 500 ppm; and T4-positive control added with synthetic additive butylated hydroxytoluene @ 200 ppm. TBARS (Thiobarbituric acid reactive substances) values revealed that T2 and T3 exhibited greater oxidative stability throughout storage. Protein carbonyl levels increased at a slower rate during storage in nano-treated essential oil groups. DPPH (2, 2 diphenyl-1-picryl hydrazyl) and FRAP (Ferric Reducing Anti-Oxidant Power) values decreased significantly (p < 0.05) during storage, with T3 having the strongest anti-oxidant activity. T2 and T3 had consistently greater texture values than the other groups. T2 and T3 demonstrated lower values for microbiological parameters, particularly on day 7 and 15. The storage stability period of emulsion was 3 days for T0 and T4, while as it was 6 days for T1 and 9 days for T2 and T3. T2 and T3 showed higher sensory scores, affirming their superior sensory appeal to other treatments. In conclusion, the essential oil nanoparticle treatments resulted in better quality and storage stability of meat emulsions during aerobic refrigerated storage.
Collapse
Affiliation(s)
- Syed A. Hussain
- Division of Livestock Products Technology, FVSc &AH, Sher-e-Kashmir University of Agricultural Science and Technology (Kashmir), Jammu & Kashmir 190006, India; (S.A.H.)
| | - Sarfaraz A. Wani
- Division of Livestock Products Technology, FVSc &AH, Sher-e-Kashmir University of Agricultural Science and Technology (Kashmir), Jammu & Kashmir 190006, India; (S.A.H.)
| | - Sheikh Rafeh
- Division of Livestock Products Technology, FVSc &AH, Sher-e-Kashmir University of Agricultural Science and Technology (Kashmir), Jammu & Kashmir 190006, India; (S.A.H.)
| | - Sheikh Adil
- Division of Livestock Production and Management, FVSc &AH, Sher-e-Kashmir University of Agricultural Science and Technology (Kashmir), Jammu & Kashmir 190006, India
| | - Asif H. Sofi
- Division of Livestock Products Technology, FVSc &AH, Sher-e-Kashmir University of Agricultural Science and Technology (Kashmir), Jammu & Kashmir 190006, India; (S.A.H.)
| | - Heba I. Ghamry
- Nutrition and Food Science, Department of Biology, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Manzoor Wani
- Division of Livestock Production and Management, FVSc &AH, Sher-e-Kashmir University of Agricultural Science and Technology (Kashmir), Jammu & Kashmir 190006, India
| |
Collapse
|
2
|
Elsherif WM, Zayed GM, Tolba AO. Antimicrobial activity of chitosan- edible films containing a combination of carvacrol and rosemary nano-emulsion against Salmonella enterica serovar Typhimurium and Listeria monocytogenes for ground meat. Int J Food Microbiol 2024; 418:110713. [PMID: 38718617 DOI: 10.1016/j.ijfoodmicro.2024.110713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/27/2024]
Abstract
This research aimed to assess the potential of active food packaging as an innovative approach to enhance the quality of fresh food products. Specifically, our focus was on developing chitosan edible films combined with rosemary nanoemulsion (Ch-RNE) and carvacrol nano-emulsion (Ch-CNE) as effective antibacterial food packaging solutions. The efficacy of these films against artificially inoculated L. monocytogenes (NCTC 13372\ ATCC® 7644) as a Gram-positive bacterium, and S. enterica serovar Typhimurium (ATCC 14028) as a Gram-negative bacterium, in ground meat was investigated. The size of the prepared nano-emulsions was characterized using zeta sizer, FTIR and HRTEM. The MIC of both nano-emulsions against both pathogens was found to be 0.78 % and 1.56 %. Filmogenic mixtures were casted using these concentrations, which were then dried and evaluated for their physical and mechanical properties.
Collapse
Affiliation(s)
- Walaa M Elsherif
- Nanotechnology Research Unit, Animal Health Research Institute, Agriculture Research Centre, Egypt; Faculty of Health Sciences Technology, New Assiut Technological University (NATU), New Assiut, Egypt.
| | - Gamal M Zayed
- Department of Pharmaceutics and Pharmaceutical Technology, Al-Azhar University at Assiut, Egypt; Faculty of Health Sciences Technology, New Assiut Technological University (NATU), New Assiut, Egypt
| | - Asmaa Osama Tolba
- Food Hygiene, Assuit University Hospitals, Assuit University, Assiut, Egypt
| |
Collapse
|
3
|
Lapčík L. Studies on Food Physical Characterization. Foods 2024; 13:1572. [PMID: 38790872 PMCID: PMC11121612 DOI: 10.3390/foods13101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
With the growing focus on sustainable food production, there has been a surge in research aimed at developing innovative and eco-friendly food alternatives [...].
Collapse
Affiliation(s)
- Lubomír Lapčík
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlín, Nam. T.G. Masaryka 5555, Zlín 760 01, Czech Republic;
- Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. Listopadu 12, Olomouc 771 46, Czech Republic
| |
Collapse
|
4
|
Gautam S, Lapcik L, Lapcikova B, Repka D, Szyk-Warszyńska L. Physicochemical Characterisation of Polysaccharide Films with Embedded Bioactive Substances. Foods 2023; 12:4454. [PMID: 38137258 PMCID: PMC10743232 DOI: 10.3390/foods12244454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, sodium carboxymethyl cellulose (CMCNa) bioactive films, crosslinked with citric acid (CA), were prepared and comprehensively examined for their suitability in various applications, focusing on food packaging. The films displayed favourable properties, including appropriate thickness, transparency, and moisture content, essential for packaging purposes. Moreover, the films exhibited excellent moisture absorption rate and barrier properties, attributed to the high concentration of CMCNa and the inclusion of a CA. These films presented no significant effect of crosslinking and bioactive components on their mechanical strength, as evidenced by tensile strength and elongation at break values. Thermal stability was demonstrated in the distinct weight loss events at different temperature ranges, with crosslinking contributing to slightly enhanced thermal performance. Furthermore, the films showed varying antioxidant activity levels, influenced by temperature and the solubility of the films in different media, indicating their potential for diverse applications. Overall, these bioactive films showed promise as versatile materials with desirable properties for food packaging and related applications, where the controlled release of bioactive components is advantageous for enhancing the shelf life and safety of food products. These findings contribute to the growing research in biodegradable and functional food packaging materials.
Collapse
Affiliation(s)
- Shweta Gautam
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlín, Nam. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic; (S.G.); or (B.L.)
| | - Lubomir Lapcik
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlín, Nam. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic; (S.G.); or (B.L.)
- Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Barbora Lapcikova
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlín, Nam. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic; (S.G.); or (B.L.)
- Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - David Repka
- Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Lilianna Szyk-Warszyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland;
| |
Collapse
|
5
|
Hashemi SMB, Kaveh S, Abedi E, Phimolsiripol Y. Polysaccharide-Based Edible Films/Coatings for the Preservation of Meat and Fish Products: Emphasis on Incorporation of Lipid-Based Nanosystems Loaded with Bioactive Compounds. Foods 2023; 12:3268. [PMID: 37685201 PMCID: PMC10487091 DOI: 10.3390/foods12173268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The high water and nutritional contents of meat and fish products make them susceptible to spoilage. Thus, one of the most important challenges faced by the meat industry is extending the shelf life of meat and fish products. In recent years, increasing concerns associated with synthetic compounds on health have limited their application in food formulations. Thus, there is a great need for natural bioactive compounds. Direct use of these compounds in the food industry has faced different obstacles due to their hydrophobic nature, high volatility, and sensitivity to processing and environmental conditions. Nanotechnology is a promising method for overcoming these challenges. Thus, this article aims to review the recent knowledge about the effect of biopolymer-based edible films or coatings on the shelf life of meat and fish products. This study begins by discussing the effect of biopolymer (pectin, alginate, and chitosan) based edible films or coatings on the oxidation stability and microbial growth of meat products. This is followed by an overview of the nano-encapsulation systems (nano-emulsions and nanoliposomes) and the effect of edible films or coatings incorporated with nanosystems on the shelf life of meat and fish products.
Collapse
Affiliation(s)
- Seyed Mohammad Bagher Hashemi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa 74616-86131, Iran; (S.M.B.H.); (E.A.)
| | - Shima Kaveh
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences & Natural Resources, Gorgan 49189-43464, Iran
| | - Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa 74616-86131, Iran; (S.M.B.H.); (E.A.)
| | | |
Collapse
|
6
|
Dehghanghadikolaei A, Abdul Halim B, Sojoudi H. Impact of Processing Parameters on Contactless Emulsification via Corona Discharge. ACS OMEGA 2023; 8:24931-24941. [PMID: 37483189 PMCID: PMC10357431 DOI: 10.1021/acsomega.3c01369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023]
Abstract
A contactless emulsification method is presented using corona discharge. The corona discharge forms using a pin-to-plate configuration, creating a non-uniform electric field. This results in a simultaneous electrohydrodynamic (EHD) pumping of silicone oil and an electroconvection of water droplets that accelerate and submerge inside the oil, leading to a continuous water-in-oil (W/O) emulsion formation process. The impact of the oil viscosity and corona generating AC and DC electric fields (i.e., voltage and frequency) on the characteristics of the emulsions is studied. The emulsification power consumption using the AC and DC electric fields is calculated and compared to traditional emulsion formation methods. While using the DC electric field results in the formation of uniform emulsions, the AC electric field is readily available and uses less power for the emulsification. This is facile, contactless, and energy-efficient for the continuous formation of W/O emulsions.
Collapse
|
7
|
Opustilová K, Lapčíková B, Lapčík L, Gautam S, Valenta T, Li P. Physico-Chemical Study of Curcumin and Its Application in O/W/O Multiple Emulsion. Foods 2023; 12:foods12071394. [PMID: 37048218 PMCID: PMC10093390 DOI: 10.3390/foods12071394] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Curcuma is a world-renowned herb known for its immense health benefits. In this study, physicochemical analyses were performed on the curcumin standard sample and curcumin multiple emulsions. The emulsions were analysed for thermal and structural stability for 21 days. Confocal laser microscopy (CLSM) was performed in order to observe the emulsion encapsulation. Modulated differential scanning calorimetry (MDSC) and HPLC methods revealed a variety of curcuminoids (curcumin, demethoxycurcumin, bisdemethoxycurcumin, and cyclocurcumin) in the investigated curcumin standard. In addition, the MDSC method was found to be suitable and comparable to HPLC for determining the curcuminoid substances. The analysis of the curcumin release revealed a value of 0.18 w.% after 14 days as the equilibrium value. Furthermore, an increase in the sizes of the emulsions was observed at the end of the 21-day study. The emulsion stability index (ESI) was used to measure the stability of multiple emulsions. The ESI reached 55.8% between 7 and 21 days later. Nano droplets of the oil phase loaded with dispersed curcumin particles captured inside the water-based carboxymethylcellulose micelles were clearly observed by CLSM.
Collapse
Affiliation(s)
- Kristýna Opustilová
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Barbora Lapčíková
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Lubomír Lapčík
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
- Correspondence: ; Tel.: +420-576-035-115
| | - Shweta Gautam
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Tomáš Valenta
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Peng Li
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| |
Collapse
|