1
|
Idahagbon NB, Nicholas RJ, Wei A. Pectin-Cellulose Nanofiber Composites: Biodegradable Materials for Modified Atmosphere Packaging. Food Hydrocoll 2025; 162:110976. [PMID: 39720107 PMCID: PMC11666126 DOI: 10.1016/j.foodhyd.2024.110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Pectin blended with cellulose nanofiber (CNF) sourced from wood pulp has excellent potential for modified atmosphere packaging (MAP), as demonstrated with refrigerated or sliced fruits enclosed in parchment coated with pectin-CNF composites. Addition of sodium borate (NaB) augments the antioxidant capacity of the composite, most likely through the generation of unsaturated pectic acid units. Packaging materials coated with pectin-CNF-NaB composites demonstrate better humidity regulation in refrigerated spaces over a 3-week period relative to uncoated controls (50% less variation), with improved preservation of strawberries as well as a reduction in the oxidative browning of sliced apples. Pectin-CNF films are both biorenewable and biodegradable as confirmed by their extensive decomposition in soil over several weeks, establishing their potential as a sustainable MAP material. Lastly, self-standing films are mechanically robust at 80% RH with tensile strength and toughness as high as 150 MPa and 8.5 MJ/m2 respectively. These values are on par with other bioplastic composites and support the practical utility of pectin-CNF composites in functional packaging applications.
Collapse
Affiliation(s)
- Nosa B Idahagbon
- Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907
| | - Robert J Nicholas
- Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907
| | - Alexander Wei
- Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907
| |
Collapse
|
2
|
Jahani A, Jazayeri MH. Tailoring cellulose: from extraction and chemical modification to advanced industrial applications. Int J Biol Macromol 2025; 309:142950. [PMID: 40216103 DOI: 10.1016/j.ijbiomac.2025.142950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/30/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Cellulose is a natural polymer with excellent physicochemical properties that can be extracted from various plant sources and has widespread applications across multiple industries. Due to its biodegradability, renewability, and mechanical strength, cellulose has gained significant attention in fields such as pharmaceuticals, food packaging, sensors, water treatment, and textiles. However, its inherent limitations, such as poor solubility, low electrical conductivity, and limited functionality, hinder its application in advanced technologies. To overcome these challenges, chemical modifications have been extensively explored to enhance its structural properties and broaden its utility in specialized applications. This review explores the modifications applied to cellulose with a focus on targeted advanced industries. Emphasis is placed on identifying the limitations of cellulose in each industry and highlighting the most recent techniques available for modifying its properties to meet specific requirements. Finally, this review discusses the challenges associated with cellulose processing and the high costs of extraction while providing insights into future research directions and potential advancements in cellulose-based technologies.
Collapse
Affiliation(s)
- Abolfazl Jahani
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Mohammad Hossein Jazayeri
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
3
|
Nicosia C, Licciardello F. Study of the release kinetics of Ethyl Lauroyl Arginate from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) active films. Food Res Int 2025; 200:115345. [PMID: 39779157 DOI: 10.1016/j.foodres.2024.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/30/2025]
Abstract
This study investigates the underexplored area of the release mechanism and kinetics of the antimicrobial Ethyl Lauroyl Arginate (LAE®) from an innovative active packaging system based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). We evaluated the impact of food simulants and temperatures on LAE® release, diffusion, and partition coefficients. Mathematical modeling was used to elucidate LAE® release kinetics, offering understanding of the release behaviour in food matrices. Results highlighted that temperature notably affected LAE® release into simulant A (10% EtOH) unlike the release into simulant D1 (50% EtOH). Although the release was faster in the less polar simulant, a greater partition coefficient demonstrated greater LAE® retention within the polymer matrix at equilibrium. Weibull models ensured robust fits, suggesting their usefulness for future studies on LAE® release kinetic. Finally, the active films were validated in food, showing significant reduction in microbial counts. These findings contribute to the design of effective antimicrobial food packaging and the selection of suitable food applications.
Collapse
Affiliation(s)
- Carola Nicosia
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy.
| | - Fabio Licciardello
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for the Improvement of Agro-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
4
|
Silva NC, Silva MJ, Assis OBG, Martelli-Tosi M. Ultrasound-assisted extraction of bioactives as a strategic step for chemical pretreatments in nanocellulose production from acerola by-products. Int J Biol Macromol 2024; 276:133876. [PMID: 39009259 DOI: 10.1016/j.ijbiomac.2024.133876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Acerola by-products (AB) have been used as raw material for extracting active compounds; however, there were no studies related to the use of the remaining acerola by-product (RAB) from this extraction. This portion still has fibers and can be used for the production of cellulose nanofibrils (CNFs); therefore, the main objective of this study was to evaluate the production of CNFs using AB and RAB and to investigate whether the extraction can be a treatment step before bleaching/acid hydrolysis. AB and RAB were characterized before and after being chemically treated (AB_CT and RAB_CT, respectively). The fibers extracted from the RAB showed the highest cellulose contents (RAB: 36.6 % and RAB_CT: 69.9 %), suggesting that the extraction process had an impact on by-product defibrillation. The same trends were observed for CNFs produced by acid hydrolysis. CNFs based on RAB showed higher yield (CNF_RAB: 25.2 % and CNF_RAB_CT: 24.2 %), higher crystallinity index (CNF_RAB: 68.3 % and CNF_RAB_CT: 71.7 %) and higher thermal stability compared to CNFs extracted from AB and AB_CT. This study proved that it is feasible to use by-products after removing the active compounds for CNF production without other pre-treatments or in association with chemical treatment to obtain more crystalline and thermally stable CNFs.
Collapse
Affiliation(s)
- Natalia Cristina Silva
- Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Faculty of Animal Science and Food Engineering, Av. Duque de Caxias Norte, 225, 13, 635-900 - Pirassununga, Brazil; EMBRAPA Instrumentação, Rua XV de Novembro, 1452, 13561-206, São Carlos, São Paulo, Brazil
| | - Maycon Jhony Silva
- EMBRAPA Instrumentação, Rua XV de Novembro, 1452, 13561-206, São Carlos, São Paulo, Brazil; Departament of Chemistry, Federal University of São Carlos, Rodovia Washington Luiz, 13565-905, São Carlos, São Paulo, Brazil
| | - Odílio Benedito Garrido Assis
- Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Faculty of Animal Science and Food Engineering, Av. Duque de Caxias Norte, 225, 13, 635-900 - Pirassununga, Brazil; EMBRAPA Instrumentação, Rua XV de Novembro, 1452, 13561-206, São Carlos, São Paulo, Brazil
| | - Milena Martelli-Tosi
- Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Faculty of Animal Science and Food Engineering, Av. Duque de Caxias Norte, 225, 13, 635-900 - Pirassununga, Brazil; Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil.
| |
Collapse
|
5
|
Kim JH, Lee T, Tsang YF, Moon DH, Lee J, Kwon EE. Functional use of carbon dioxide for the sustainable valorization of orange peel in the pyrolysis process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173701. [PMID: 38844232 DOI: 10.1016/j.scitotenv.2024.173701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Although biomass is carbon-neutral, its use as a primary feedstock faces challenges arising from inconsistent supply chains. Therefore, it becomes crucial to explore alternatives with reliable availability. This study proposes a strategic approach for the thermochemical valorization of food processing waste, which is abundantly generated at single sites within large-scale processing plants. As a model biomass waste from the food industry, orange peel waste was particularly chosen considering its substantial consumption. To impart sustainability to the pyrolysis system, CO2, a key greenhouse gas, was introduced. As such, this study highlights elucidating the functionality of CO2 as a reactive feedstock. Specifically, CO2 has the potential to react with volatile pyrolysates evolved from orange peel waste, leading to CO formation at ≥490 °C. The formation of chemical constituents, encompassing acids, ketones, furans, phenols, and aromatics, simultaneously decreased by 15.1 area% in the presence of CO2. To activate the efficacy of CO2 at the broader temperature spectrum, supplementary measures, such as an additional heating element (700 °C) and a nickel-based catalyst (Ni/Al2O3), were implemented. These configurations promote thermal cracking of the volatiles and their reaction kinetics with CO2, representing an opportunity for enhanced carbon utilization in the form of CO. Finally, the integrated process of CO2-assisted catalytic pyrolysis and water-gas shift reaction was proposed. A potential revenue when maximizing the productivity of H2 was estimated as 2.62 billion USD, equivalent to 1.11 times higher than the results from the inert (N2) environment. Therefore, utilizing CO2 in the pyrolysis system creates a promising approach for enhancing the sustainability of the thermochemical valorization platform while maximizing carbon utilization in the form of CO.
Collapse
Affiliation(s)
- Jung-Hun Kim
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Taewoo Lee
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies and State Key Laboratory in Marine Pollution, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Deok Hyun Moon
- Department of Environmental Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Jechan Lee
- Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eilhann E Kwon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
6
|
Yun D, Liu J. Preparation, Characterization and Application of Active Food Packaging Films Based on Sodium Alginate and Twelve Varieties of Mandarin Peel Powder. Foods 2024; 13:1174. [PMID: 38672846 PMCID: PMC11048805 DOI: 10.3390/foods13081174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The industrial processing of mandarin fruits yields a large amount of peel waste, resulting in economic losses and environmental pollution. The peels of mandarin fruits are a good source of biomass and active substances that can be used to produce food packaging systems. In this study, active food packaging films were prepared based on sodium alginate and twelve varieties of mandarin peel powder. The structures, properties, and corn oil packaging performance of the films were compared. Results showed that the twelve varieties of mandarin peel powder differed in pectin, lipid, protein, crude fiber, and total phenol contents. The prepared films all exhibited a yellow color, 117.73-152.45 μm thickness, 16.39-23.62% moisture content, 26.03-90.75° water contact angle, 5.38-8.31 × 10-11 g m-1 s-1 Pa-1 water vapor permeability, 5.26-12.91 × 10-20 m2 s-1 Pa-1 oxygen permeability, 4.87-7.90 MPa tensile strength, and 13.37-24.62% elongation at break. Notably, the films containing mandarin peel powder with high pectin and lipid contents showed high moisture/oxygen barrier ability and mechanical properties. The films containing mandarin peel powder with high total phenol content exhibited high antioxidant- and antimicrobial-releasing abilities and good performance in delaying corn oil oxidation. Overall, the results suggested that the films have good application potential in active food packaging.
Collapse
Affiliation(s)
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| |
Collapse
|
7
|
Iñiguez-Moreno M, Pizaña-Aranda JJP, Ramírez-Gamboa D, Ramírez-Herrera CA, Araújo RG, Flores-Contreras EA, Iqbal HMN, Parra-Saldívar R, Melchor-Martínez EM. Enhancing pectin extraction from orange peel through citric acid-assisted optimization based on a dual response. Int J Biol Macromol 2024; 263:130230. [PMID: 38373564 DOI: 10.1016/j.ijbiomac.2024.130230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Pectin is widely used in several products in the industry. Conventionally, strong and harmful acids are used for its extraction. This study optimized the extraction of orange peel's pectin using citric acid, considering yield and degree of esterification (DE) as response variables. Proximal analyses were performed, and the samples were subjected to a Box-Behnken design on three central points, considering as variables the temperature, time, and pH. The results of proximate analyses of the orange peels revealed 11.76 % moisture content, 87.26 % volatiles, 0.09 % ash, 50.45 % soluble carbohydrates, 70.60 % total carbohydrates, 0.89 % fixed carbon, 5.35 % lipids, and 36.75 mg GAE/g of phenolic compounds. The resulting second-order polynomial model described the relation of the input and output variables related to each other. The best performance to obtain a higher yield (18.18 %) of high methoxyl pectin (DE 50 %) was set at 100 °C/30 min/pH 2.48. Pectin showed antioxidant properties by ABTS and DPPH assays and similar thermal properties to the commercial polymer. Its equivalent weight was 1219.51 mol/g, and the methoxyl and anhydrouronic acid were 2.23 and 67.10 %, respectively. Hence, pectin extraction with citric acid results in a high-quality polymer and could be used as a gelling agent, stabilizer, or texturizer in food products.
Collapse
Affiliation(s)
- Maricarmen Iñiguez-Moreno
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - José Juan Pablo Pizaña-Aranda
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Diana Ramírez-Gamboa
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | | | - Rafael G Araújo
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Elda A Flores-Contreras
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico.
| |
Collapse
|
8
|
Şimşek İ, Bahadir T, Çelebi H, Tulun Ş. Selective adsorption of single and binary dyestuffs by citrus peel: Characterization, and adsorption performance. CHEMOSPHERE 2024; 352:141475. [PMID: 38367873 DOI: 10.1016/j.chemosphere.2024.141475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
The powdered citrus peel, which has been replaced with sodium hydroxide, was used in this study to test how well methylene blue and reactive black 5 dyestuff absorbed one or both. To find out about the texture and surface chemistry of modified citrus peel, Fourier transform infrared spectroscopy and scanning electron microscope analyses were carried out. Fourier transform infrared spectroscopy data revealed the presence of amphoteric radicals on the modified citrus peel surface, indicating the effective adsorption of methylene blue and reactive black 5. Many parameters affecting the batch adsorption process, such as modified citrus peel dose (0.1-0.5 g), pH (2-10), time (20-80 min), stirring speed (60-180 rpm), and temperature (20-45 °C), were studied. It is seen that the physical effect is at the forefront, homogeneous monolayer adsorption occurs, and the process fits the Langmuir and pseudo first order models for dyestuffs. Thermodynamic modeling showed that the adsorption of methylene blue and reactive black 5 was spontaneous and endothermic. At pH 2, an adsorption capacity of 0.67 mg/g and a removal efficiency of 66.86% were achieved for reactive black 5. For methylene blue at pH 6, the adsorption capacity was 4.34 mg/g, and the decolorization rate was 87%. The decreases in the removal rates of dyestuffs in the binary system indicate that they are affected by their simultaneous presence in the solution. The results proved that modified citrus peel can be useful for dyestuff removal in single or binary systems, although the removal capacity of modified citrus peel is highly dependent on methylene blue and reactive black 5.
Collapse
Affiliation(s)
- İsmail Şimşek
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100, Aksaray, Turkey
| | - Tolga Bahadir
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100, Aksaray, Turkey
| | - Hakan Çelebi
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100, Aksaray, Turkey.
| | - Şevket Tulun
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100, Aksaray, Turkey
| |
Collapse
|
9
|
Conte A, Del Nobile MA. Introduction to the Special Issue "Scientific Breakthroughs to Fruit and Vegetable By-Product Valorization in the Food Sector". Foods 2023; 12:2726. [PMID: 37509818 PMCID: PMC10378762 DOI: 10.3390/foods12142726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
We are pleased to present this Special Issue, which includes five papers that highlight important research activities in the field of fruit and vegetable by-product valorization [...].
Collapse
Affiliation(s)
- Amalia Conte
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Matteo A Del Nobile
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| |
Collapse
|
10
|
Bigi F, Maurizzi E, Haghighi H, Siesler HW, Licciardello F, Pulvirenti A. Correction: Bigi et al. Waste Orange Peels as a Source of Cellulose Nanocrystals and Their Use for the Development of Nanocomposite Films. Foods 2023, 12, 960. Foods 2023; 12:foods12091902. [PMID: 37174465 PMCID: PMC10178560 DOI: 10.3390/foods12091902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
In the original publication [...].
Collapse
Affiliation(s)
- Francesco Bigi
- Department of Life Sciences, University of Modena and Reggio Emilia, 42015 Reggio Emilia, Italy
| | - Enrico Maurizzi
- Department of Life Sciences, University of Modena and Reggio Emilia, 42015 Reggio Emilia, Italy
| | - Hossein Haghighi
- Department of Life Sciences, University of Modena and Reggio Emilia, 42015 Reggio Emilia, Italy
| | - Heinz Wilhelm Siesler
- Department of Physical Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Fabio Licciardello
- Department of Life Sciences, University of Modena and Reggio Emilia, 42015 Reggio Emilia, Italy
- Interdepartmental Research Centre for the Improvement of Agri-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, 42015 Reggio Emilia, Italy
| | - Andrea Pulvirenti
- Department of Life Sciences, University of Modena and Reggio Emilia, 42015 Reggio Emilia, Italy
- Interdepartmental Research Centre for the Improvement of Agri-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, 42015 Reggio Emilia, Italy
| |
Collapse
|