1
|
Wang Z, Liu X, Liu S, Zhou W, Chen T, Gao S, Wu H, Zhang W, Tang R, Fang Y. Function Identification of a Lactonase Gene lac1563 Involved in Producing Urolithin A of Limosilactobacillus fermentum FUA033. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6795-6806. [PMID: 40062842 DOI: 10.1021/acs.jafc.4c10908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
This study aimed to identify the lactonase gene in Limosilactobacillus fermentum FUA033 that facilitates the conversion of ellagic acid into urolithin A. Lactonase gene candidates were identified genome analysis. A series of overexpression, knockout, and complementation strains of these candidate genes were subsequently generated. The urolithin A yield of the lac1563 knockout strain was significantly reduced compared to the wild-type strain, whereas the overexpression strain exhibited a markedly higher yield. The complementation strain showed no significant difference in urolithin A yield relative to the wild-type strain. In contrast, alterations in the lac329 gene did not significantly impact urolithin A production compared to the wild-type strain. Additionally, the candidate lactonase genes were cloned and heterologously expressed in Escherichia coli. The recombinant lactonase derived from the lac1563 gene, unlike that from the lac329 gene, demonstrated activity toward ellagic acid. Optimal activity of the lac1563 lactonase occurred at 37 °C and pH 7.0. Enzyme activity was notably enhanced by Mn2+ and Co2+, while inhibited by Zn2+ and Cu2+. These findings contribute valuable insights into the metabolic pathway of ellagic acid conversion to urolithin A and establish the lac1563 gene as a promising candidate for biotechnological applications aimed at urolithin A production.
Collapse
Affiliation(s)
- Ze Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoli Liu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wenmei Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Tao Chen
- Suqian Product Quality Supervision and Testing Institute, Suqian 223814, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hao Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wenjun Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Rui Tang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
2
|
Kerek A, Szabó E, Szabó Á, Papp M, Bányai K, Kardos G, Kaszab E, Bali K, Jerzsele Á. Investigating antimicrobial resistance genes in probiotic products for companion animals. Front Vet Sci 2024; 11:1464351. [PMID: 39502950 PMCID: PMC11534615 DOI: 10.3389/fvets.2024.1464351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction One of the greatest challenges of our time is antimicrobial resistance, which could become the leading cause of death globally within a few decades. In the context of One Health, it is in the common interest to mitigate the global spread of antimicrobial resistance by seeking alternative solutions, alongside appropriate drug selection and responsible use. Probiotics offer a potential avenue to reduce antibiotic usage; however, there is a scarcity of research that examines commercial products in terms of carrying antimicrobial resistance genes (ARGs) involved in resistance development through microbial vectors. Methods Our study investigated 10 commercially available probiotic products for cats and dogs. Initially, we conducted phenotypic testing through determination of minimum inhibitory concentration (MIC) for antibiotics important in animal and public health. Subsequently, we performed next-generation sequencing (NGS) of the products to elucidate the genetic background behind the decrease in phenotypic sensitivity. Results In total, 19 types of ARGs were identified, with 57.9% being found on plasmids, and in two cases, carriage as mobile genetic elements were found. One of the genes identified was the APH(3')-Ia gene, capable of inactivating aminoglycoside antibiotics through phosphotransferase enzyme production regulation, while the other was the tetS gene, capable of conferring reduced sensitivity to tetracycline antibiotics through target protection. Discussion Our findings underscore the importance of approaching antimicrobial resistance investigations from a broader perspective. We suggest that further studies in this area are justified and raise questions regarding the need to extend legally required studies on probiotic products from their use in economic livestock to their use in companion animals.
Collapse
Affiliation(s)
- Adam Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Emese Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Márton Papp
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary
| | - Krisztián Bányai
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
- Veterinary Medical Research Institute, Budapest, Hungary
| | - Gábor Kardos
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
- One Health Institute, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
- National Public Health Center, Budapest, Hungary
- Department of Metagenomics, University of Debrecen, Debrecen, Hungary
| | - Eszter Kaszab
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
- One Health Institute, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | - Krisztina Bali
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
3
|
Han KI, Shin HD, Lee Y, Baek S, Moon E, Park YB, Cho J, Lee JH, Kim TJ, Manoharan RK. Probiotic and Postbiotic Potentials of Enterococcus faecalis EF-2001: A Safety Assessment. Pharmaceuticals (Basel) 2024; 17:1383. [PMID: 39459022 PMCID: PMC11510163 DOI: 10.3390/ph17101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Probiotics, which are live microorganisms that, when given in sufficient quantities, promote the host's health, have drawn a lot of interest for their ability to enhance gut health. Enterococcus faecalis, a member of the human gut microbiota, has shown promise as a probiotic candidate due to its functional attributes. However, safety concerns associated with certain strains warrant comprehensive evaluation before therapeutic application. MATERIALS AND METHODS In this study, E. faecalis EF-2001, originally isolated from fecal samples of a healthy human infant, was subjected to a multi-faceted assessment for its safety and probiotic potential. In silico analysis, CAZyme, biosynthetic, and stress-responsive proteins were identified. RESULTS The genome lacked biogenic amine genes but contained some essential amino acid and vitamin synthetic genes, and carbohydrate-related enzymes essential for probiotic properties. The negligible difference of 0.03% between the 1st and 25th generations indicates that the genetic information of the E. faecalis EF-2001 genome remained stable. The live E. faecalis EF-2001 (E. faecalis EF-2001L) demonstrated low or no virulence potential, minimal D-Lactate production, and susceptibility to most antibiotics except some aminoglycosides. No bile salt deconjugation or biogenic amine production was observed in an in vitro assay. Hemolytic activity assessment showed a β-hemolytic pattern, indicating no red blood cell lysis. Furthermore, the EF-2001L did not produce gelatinase and tolerated simulated gastric and intestinal fluids in an in vitro study. Similarly, heat-killed E. faecalis EF-2001 (E. faecalis EF-2001HK) exhibits tolerance in both acid and base conditions in vitro. Further, no cytotoxicity of postbiotic EF-2001HK was observed in human colorectal adenocarcinoma HT-29 cells. CONCLUSIONS These potential properties suggest that probiotic and postbiotic E. faecalis EF-2001 could be considered safe and retain metabolic activity suitable for human consumption.
Collapse
Affiliation(s)
- Kwon Il Han
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Hyun-Dong Shin
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Yura Lee
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Sunhwa Baek
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Eunjung Moon
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Youn Bum Park
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Junhui Cho
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Jin-Ho Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea;
| | - Tack-Joong Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea;
| | - Ranjith Kumar Manoharan
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| |
Collapse
|
4
|
Bahiraii S, Braunböck-Müller B, Heiss EH. Increased Glycolytic Activity Is Part of Impeded M1(LPS) Macrophage Polarization in the Presence of Urolithin A. PLANTA MEDICA 2024; 90:546-553. [PMID: 38843794 PMCID: PMC11156499 DOI: 10.1055/a-2240-7462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/09/2023] [Indexed: 06/10/2024]
Abstract
Urolithin A is a gut metabolite of ellagitannins and reported to confer health benefits, e.g., by increased clearance of damaged mitochondria by macroautophagy or curbed inflammation. One targeted cell type are macrophages, which are plastic and able to adopt pro- or anti-inflammatory polarization states, usually assigned as M1 and M2 macrophages, respectively. This flexibility is tightly coupled to characteristic shifts in metabolism, such as increased glycolysis in M1 macrophages, and protein expression upon appropriate stimulation. This study aimed at investigating whether the anti-inflammatory properties of U: rolithin A may be driven by metabolic alterations in cultivated murine M1(lipopolysaccharide) macrophages. Expression and extracellular flux analyses showed that urolithin A led to reduced il1β, il6, and nos2 expression and boosted glycolytic activity in M1(lipopolysaccharide) macrophages. The pro-glycolytic feature of UROLITHIN A: occurred in order to causally contribute to its anti-inflammatory potential, based on experiments in cells with impeded glycolysis. Mdivi, an inhibitor of mitochondrial fission, blunted increased glycolytic activity and reduced M1 marker expression in M1(lipopolysaccharide/UROLITHIN A: ), indicating that segregation of mitochondria was a prerequisite for both actions of UROLITHIN A: . Overall, we uncovered a so far unappreciated metabolic facet within the anti-inflammatory activity of UROLITHIN A: and call for caution about the simplified notion of increased aerobic glycolysis as an inevitably proinflammatory feature in macrophages upon exposure to natural products.
Collapse
Affiliation(s)
- Sheyda Bahiraii
- Department of Pharmaceutical Sciences/Pharmacognosy, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | | | - Elke H. Heiss
- Department of Pharmaceutical Sciences/Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Ghosh S, Erickson D, Chua MJ, Collins J, Jala VR. The microbial metabolite urolithin A reduces Clostridioides difficile toxin expression and toxin-induced epithelial damage. mSystems 2024; 9:e0125523. [PMID: 38193707 PMCID: PMC10878087 DOI: 10.1128/msystems.01255-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Clostridioides difficile is a Gram-positive, anaerobic, spore-forming bacterium responsible for antibiotic-associated pseudomembranous colitis. Clostridioides difficile infection (CDI) symptoms can range from diarrhea to life-threatening colon damage. Toxins produced by C. difficile (TcdA and TcdB) cause intestinal epithelial injury and lead to severe gut barrier dysfunction, stem cell damage, and impaired regeneration of the gut epithelium. Current treatment options for intestinal repair are limited. In this study, we demonstrate that treatment with the microbial metabolite urolithin A (UroA) attenuates CDI-induced adverse effects on the colon epithelium in a preclinical model of CDI-induced colitis. Moreover, our analysis suggests that UroA treatment protects against C. difficile-induced inflammation, disruption of gut barrier integrity, and intestinal tight junction proteins in the colon of CDI mice. Importantly, UroA treatment significantly reduced the expression and release of toxins from C. difficile without inducing bacterial cell death. These results indicate the direct regulatory effects of UroA on bacterial gene regulation. Overall, our findings reveal a novel aspect of UroA activity, as it appears to act at both the bacterial and host levels to protect against CDI-induced colitis pathogenesis. This research sheds light on a promising avenue for the development of novel treatments for C. difficile infection.IMPORTANCETherapy for Clostridioides difficile infections includes the use of antibiotics, immunosuppressors, and fecal microbiota transplantation. However, these treatments have several drawbacks, including the loss of colonization resistance, the promotion of autoimmune disorders, and the potential for unknown pathogens in donor samples. To date, the potential benefits of microbial metabolites in CDI-induced colitis have not been fully investigated. Here, we report for the first time that the microbial metabolite urolithin A has the potential to block toxin production from C. difficile and enhance gut barrier function to mitigate CDI-induced colitis.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- UofL-Brown Cancer Center, Louisville, Kentucky, USA
| | - Daniel Erickson
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Michelle J. Chua
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - James Collins
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
- Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, Kentucky, USA
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- UofL-Brown Cancer Center, Louisville, Kentucky, USA
- Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, Kentucky, USA
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
6
|
He F, Bian Y, Zhao Y, Xia M, Liu S, Gui J, Hou X, Fang Y. In vitro conversion of ellagic acid to urolithin A by different gut microbiota of urolithin metabotype A. Appl Microbiol Biotechnol 2024; 108:215. [PMID: 38363367 PMCID: PMC10873453 DOI: 10.1007/s00253-024-13061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
The metabolite urolithin A, a metabolite of the dietary polyphenol ellagic acid (EA), has significant health benefits for humans. However, studies on the gut microbiota involved in ellagic acid metabolism are limited. In this study, we conducted in vitro fermentation of EA using human intestinal microbiome combined with antibiotics (vancomycin, polymyxin B sulfate, and amphotericin B). Liquid chromatography-mass spectrometry (LC-MS/MS) analysis demonstrated that the production capacity of urolithin A by gut microbiota co-treated with polymyxin B sulfate and amphotericin B (22.39 µM) was similar to that of untreated gut microbiota (24.26 µM). Macrogenomics (high-throughput sequencing) was used to analyze the composition and structure of the gut microbiota. The results showed that the abundance of Bifidobacterium longum, Bifidobacterium adolescentis, and Bifidobacterium bifidum in the gut microbiota without antibiotic treatment or co-treated with polymyxin B sulfate and amphotericin B during EA fermentation was higher than that in other antibiotic treatment gut microbiota. Therefore, B. longum, B. adolescentis, and B. bifidum may be new genera involved in the conversion of EA to urolithin A. In conclusion, the study revealed unique interactions between polyphenols and gut microbiota, deepening our understanding of the relationship between phenolic compounds like EA and the gut microbiota. These findings may contribute to the development of gut bacteria as potential probiotics for further development. KEY POINTS: • Intestinal microbiome involved in ellagic acid metabolism. • Gram-positive bacteria in the intestinal microbiome are crucial for ellagic acid metabolism. • Bifidobacterium longum, Bifidobacterium adolescentis, and Bifidobacterium bifidum participate in ellagic acid metabolism.
Collapse
Affiliation(s)
- Fuxiang He
- Jiangsu Key Laboratory of Marine Bioresources and Environment /Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean, Lianyungang, China
- College of Ocean Food and Biological Engineering, Lianyungang, 222005, China
| | - Yingying Bian
- College of Ocean Food and Biological Engineering, Lianyungang, 222005, China
| | - Yaling Zhao
- College of Ocean Food and Biological Engineering, Lianyungang, 222005, China
| | - Mengjie Xia
- Jiangsu Key Laboratory of Marine Bioresources and Environment /Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean, Lianyungang, China
- College of Ocean Food and Biological Engineering, Lianyungang, 222005, China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment /Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean, Lianyungang, China
- College of Ocean Food and Biological Engineering, Lianyungang, 222005, China
| | - Jiajin Gui
- Jiangsu Key Laboratory of Marine Bioresources and Environment /Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean, Lianyungang, China
- College of Ocean Food and Biological Engineering, Lianyungang, 222005, China
| | - Xiaoyue Hou
- Jiangsu Key Laboratory of Marine Bioresources and Environment /Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean, Lianyungang, China.
- College of Ocean Food and Biological Engineering, Lianyungang, 222005, China.
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment /Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean, Lianyungang, China.
- College of Ocean Food and Biological Engineering, Lianyungang, 222005, China.
| |
Collapse
|
7
|
Xia M, Hua Z, Zhao Y, Zhang G, Hou X, Yang G, Liu S, Fang Y. Improvement of Urolithin A Yield by In Vitro Cofermentation of Streptococcus thermophilus FUA329 with Human Gut Microbiota from Different Urolithin Metabotypes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3008-3016. [PMID: 38301119 DOI: 10.1021/acs.jafc.3c09734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Streptococcus thermophilus FUA329 converts ellagic acid (EA) to urolithin A (Uro-A), which is not autonomously converted by the gut microbiota to produce highly bioavailable and multibiologically active Uro-A in urolithin metabotype 0 (UM-0) populations. We consider that Streptococcus thermophilus FUA329 has the potential to be developed as a probiotic. Therefore, we utilized S. thermophilus FUA329 for in vitro cofermentation with gut microbiota. The results revealed that strain FUA329 increased the production of EA-converted Uro-A during in vitro cofermentation with the human gut microbiota of different urolithin metabotypes (UMs), with a significant increase in the production of Uro-A in the experimental group of UM-0. In addition, changes in the in vitro cofermentation microbial community were determined using high-throughput sequencing. Strain FUA329 modulated the structure and composition of the gut microbiota in different UMs, thereby significantly increasing the abundance of beneficial microbiota in the gut microbiota while decreasing the abundance of harmful microbiota. Of greatest interest was the significant increase in the abundance of Actinobacteria phylum after the cofermentation of strain FUA329 with UM-0 gut microbiota, which might be related to the significant increase in the production of Uro-A.
Collapse
Affiliation(s)
- Mengjie Xia
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Ocean Food and Biochemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ziyan Hua
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Ocean Food and Biochemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yaling Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Ocean Food and Biochemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Gewen Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Ocean Food and Biochemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyue Hou
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Ocean Food and Biochemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Ocean Food and Biochemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Ocean Food and Biochemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Ocean Food and Biochemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
8
|
Maitreya A, Qureshi A. Genomic and phenotypic characterisation of Enterococcus mundtii AM_AQ_BC8 for its anti-biofilm, antimicrobial and probiotic potential. Arch Microbiol 2024; 206:84. [PMID: 38296886 DOI: 10.1007/s00203-023-03816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024]
Abstract
Enterococcus mundtii AM_AQ_BC8 isolated from biofouled filtration membrane was characterised as a potential probiotic bacterium showing strong L-lactic acid-producing capability. Experimental studies revealed that E. mundtii AM_AQ_BC8 possess antibiofilm and antimicrobial ability too, as tested against strong biofilm-forming bacteria like Pseudomonas spp. The present study has evaluated the genetic potential of E. mundtii AM_AQ_BC8 through genome sequencing. Whole genome analysis revealed the presence of key genes like ldh_1 and ldh_2 responsible for lactic acid production along with genes encoding probiotic features such as acid and bile salt resistance (dnaK, dnaJ, argS), fatty acid synthesis (fabD, fabE) and lactose utilisation (lacG, lacD). The phylogenomic analysis based on OrthoANI (99.85%) and dDDH (96.8%) values revealed that the strain AM_AQ_BC8 shared the highest homology with E. mundtii. The genome sequence of strain AM_AQ_BC8 has been deposited to NCBI and released with GenBank accession no. SAMN32531201. The study primarily demonstrated the probiotic potential of E. mundtii AM_AQ_BC8 isolate, for L-lactate synthesis in high concentration (8.98 g/L/day), which also showed anti-biofilm and antimicrobial activities.
Collapse
Affiliation(s)
- Anuja Maitreya
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute Nehru Marg, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Liu M, Chen Z, Zhang H, Cai Z, Liu T, Zhang M, Wu X, Ai F, Liu G, Zeng C, Shen J. Urolithin A alleviates early brain injury after subarachnoid hemorrhage by regulating the AMPK/mTOR pathway-mediated autophagy. Neurochirurgie 2023; 69:101480. [PMID: 37598622 DOI: 10.1016/j.neuchi.2023.101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVE Unfavorable outcomes in patients with subarachnoid hemorrhage (SAH) are mainly attributed to early brain injury (EBI). Reduction of neuronal death can improve the prognosis in SAH patients. Autophagy and apoptosis are critical players in neuronal death. Urolithin A (UA) is a natural compound produced by gut bacteria from ingested ellagitannins and ellagic acid. Here, we detected the role of UA in EBI post-SAH. METHODS We established an animal model of SAH in rats by endovascular perforation, with administration of UA, 3-methyladenine (3-MA) and Compound C. SAH grading, neurological function, brain water content, western blotting analysis of levels of proteins related to apoptosis, autophagy and pathways, blood-brain barrier (BBB) integrity, TUNEL staining, and immunofluorescence staining of LC3 were evaluated at 24h after SAH. RESULTS SAH induction led to neurological dysfunctions, BBB disruption, and cerebral edema at 24h post-SAH in rats, which were relieved by UA. Additionally, cortical neuronal apoptosis in SAH rats was also attenuated by UA. Moreover, UA restored autophagy level in SAH rats. Mechanistically, UA activated the AMPK/mTOR pathway. Furthermore, inhibition of autophagy and AMPK limited UA-mediated protection against EBI post-SAH CONCLUSION: UA alleviates neurological deficits, BBB permeability, and cerebral edema by inhibiting cortical neuronal apoptosis through regulating the AMPK/mTOR pathway-dependent autophagy in rats following SAH.
Collapse
Affiliation(s)
- Meiqiu Liu
- Department of Neurosurgery, Ningde Municipal Hospital of Ningde Normal University, Ningde 352000, China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Huan Zhang
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Zhiji Cai
- Department of Neurosurgery, Ningde Municipal Hospital of Ningde Normal University, Ningde 352000, China
| | - Tiancheng Liu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Mengli Zhang
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Xian Wu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Ganzhe Liu
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Chao Zeng
- Department of Neurosurgery, Ningde Municipal Hospital of Ningde Normal University, Ningde 352000, China.
| | - Jiancheng Shen
- Department of Neurosurgery, Ningde Municipal Hospital of Ningde Normal University, Ningde 352000, China.
| |
Collapse
|