1
|
Zhang C, Lu W, Chen D, Zhang Y, Li J, Gou Z, Xiao C. Potential of beef tallow/palm oil blend as Chongqing hotpot oil from a physicochemical and flavor perspective. Food Chem X 2025; 27:102371. [PMID: 40206047 PMCID: PMC11979423 DOI: 10.1016/j.fochx.2025.102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Beef tallow is an important raw material in Chongqing hotpot seasoning but raises great concern on health due to the cholesterol issue. Herein, palm oil was expected to replace beef tallow at weight ratios of 2:1, 1:1, and 1:2 without reducing hotpot flavor. The blending of palm oil to beef tallow effectively decreased cholesterol content to 33.20 mg 100 g-1, as well as the level of saturated fatty acids to 50 % in hotpot oil. The fading in brightness and yellowness of oil models occurred owing to heat treatment. The blending oil at 2:1 showed similar hardness, melting and crystallization behaviors to beef tallow, probably due to the similar fat crystal network. The volatile compounds of hotpot seasoning made from the oil were closer to that from neat beef tallow. These findings may provide a new strategy to develop healthier and tastier base oil for the production of Chongqing hotpot seasoning.
Collapse
Affiliation(s)
- Cen Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenjing Lu
- State Key Laboratory for Quality and Safety of Agro-Products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Di Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jie Li
- Juhui Food Technology Co. Ltd., Chongqing 400713, China
| | - Zhongjun Gou
- Juhui Food Technology Co. Ltd., Chongqing 400713, China
| | - Chaogeng Xiao
- State Key Laboratory for Quality and Safety of Agro-Products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
2
|
Shabbir MN, Ahmad A, Aslam M, Hassan A, Ullah H, Akram M, Qayum HF, Naeem F. Chemically modified filter paper with Jaman fruit extract for visual sensing of milk freshness. Food Chem 2025; 466:142181. [PMID: 39602997 DOI: 10.1016/j.foodchem.2024.142181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Developing a non-toxic, cost-effective, and user-friendly indicator for detecting milk freshness and spoilage, with potential applications in smart packaging, presents a significant challenge. In this study, we extracted natural anthocyanins (ACNs) from Jaman (Syzgium cumini) and incorporated it in to filter paper. The presence of ACNs in the extract was confirmed through UPLC-MS/MS analysis. To enhance stability and prevent leaching, the ACNs-loaded filter paper was coated with 1 % chitosan (CH). The sensor strips were thoroughly characterized using FTIR, contact angle measurements, XRD, and FE-SEM. These strips displayed a distinct and quantifiable color change from red to colorless to yellow across different pH levels. Additionally, in real-time milk spoilage detection, the sensor transitioned from light purple to colorless. The strips demonstrated reproducibility and stability, even under high temperatures and extreme pH conditions. These findings suggest that the ACNs-loaded sensor strips hold promise for use as smart packaging materials.
Collapse
Affiliation(s)
- Muhammad Naeem Shabbir
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Adeel Ahmad
- Department of Chemistry, University of Lahore, Lahore 54000, Pakistan
| | - Muhammad Aslam
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Ayaz Hassan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore Campus, Lahore 54000, Pakistan
| | - Hidayat Ullah
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore Campus, Lahore 54000, Pakistan
| | - Muhammad Akram
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore Campus, Lahore 54000, Pakistan; Biomedical Engineering Program, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
| | - Hafiza Fatima Qayum
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Fatima Naeem
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| |
Collapse
|
3
|
Zhang Z, Jiang K, Yang A, Xu K, Meng F, Zhong F, Wang B. Effect of Whey Protein Changes on Milk Flavor and Sensory Characteristics During Heating. Foods 2024; 14:33. [PMID: 39796323 PMCID: PMC11720481 DOI: 10.3390/foods14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
The flavor of dairy products crucially affects consumer purchase preference. Although the flavor and sensory perception of milk can be influenced by heat treatment during processing, the exact mechanism remains unclear. Therefore, this study analyzed the whey protein content and structural changes of milk heated at different time and temperature combinations and evaluated the flavor compounds and sensory characteristics of milk. The results showed that higher temperatures changed the secondary milk whey protein structures and gradually increased α-lactalbumin, β-lactoglobulin, and lactoferrin denaturation in the milk. There were differences in sensory characteristics of milk heated at different time and temperature combinations. The correlation analysis indicated that whey protein denaturation was negatively correlated with 1-octen-3-ol (p < 0.05) and positively associated with hexanal, isovaleric acid, γ-nonalactone, methyl palmitate, and phenol (p < 0.01). The changes in the content and secondary structure of whey proteins affected the interaction between flavor compounds and whey protein, which affected the release of flavor compounds. Consequently, the sensory characteristics of milk were influenced. This study provides a theoretical basis for exploring the interaction between whey proteins and flavor compounds.
Collapse
Affiliation(s)
- Zheting Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Z.Z.); (K.J.); (A.Y.); (K.X.); (F.M.)
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Kexin Jiang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Z.Z.); (K.J.); (A.Y.); (K.X.); (F.M.)
| | - Aolin Yang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Z.Z.); (K.J.); (A.Y.); (K.X.); (F.M.)
| | - Kunli Xu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Z.Z.); (K.J.); (A.Y.); (K.X.); (F.M.)
| | - Fanyu Meng
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Z.Z.); (K.J.); (A.Y.); (K.X.); (F.M.)
| | - Fang Zhong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Bei Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Z.Z.); (K.J.); (A.Y.); (K.X.); (F.M.)
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| |
Collapse
|
4
|
He N, Chen X, Li L, Wang S, Lan M, Yuan Y, Zhang Z, Li T, Zhang X, He X, Li B. κ-Carrageenan masking bitterness perception in surimi gels containing potassium chloride-based salt substitutes: Gel properties, oral processing, and sensory evaluation. Food Chem 2024; 456:139859. [PMID: 38870800 DOI: 10.1016/j.foodchem.2024.139859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/12/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
κ-Carrageenan (CG) was employed to mask the bitterness induced by 50% KCl in surimi gels to achieve salt reduction and gel performance improvement. The combination of KCl and CG (KCl + CG) yielded the increased textural characteristics and water-holding capacity (WHC) of surimi gels and facilitated the transition of free water to immobilized water. In addition, the KCl + CG supplement increased the turbidity and particle size of myofibrillar protein (MP) sols but decreased the surface hydrophobicity in a dose-dependent manner. The hydrophobic interactions and disulfide bonds played crucial roles in maintaining the stability of MP gels. The specific binding of potassium ions to the sulfate groups of CG limited the release and diffusion of potassium ions from the surimi gels during oral processing, effectively masking the bitterness perception and maintaining the saltiness perception. This study provides a promising strategy to reduce the utilization of sodium salt in surimi products.
Collapse
Affiliation(s)
- Ni He
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xinran Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Meijuan Lan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Yi Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhenhui Zhang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, China
| | - Tongshuai Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xing He
- College of Information Technology and Engineering, Guangzhou College of Commerce, Guangzhou 511363, China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
5
|
Pakaweerachat P, Chysirichote T. Effects of Broth pH and Chilling Storage on the Changes in Volatile Profiles of Boiled Chicken Flesh. Food Sci Anim Resour 2024; 44:1096-1107. [PMID: 39246546 PMCID: PMC11377206 DOI: 10.5851/kosfa.2024.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 09/10/2024] Open
Abstract
This study investigated the changes in volatile compounds in chicken flesh after boiling at various pHs (6.0-9.0) and after chilling storage (4.0±1.0°C) for 7 d. The volatile compounds were assessed qualitatively and quantitatively by using a headspace gas chromatography-mass spectrometry analysis. Twenty-one volatile compounds were discovered and categorized as amine, aldehyde, alcohol, ketone, acid, and furan. One type of amine, (2-aziridinylethyl) amine, was the most prevalent volatile component, followed by aldehyde, ketone, aldehyde, acid, ester, and furan. The results showed that the quantity and quality of the volatile compounds were influenced by a pH of the boiling medium. Additionally, the types and volatile profiles of the chicken were altered during chilling. In particular, in the chicken that was boiled at a pH of 8.0, the hexanal (an aldehyde) content increased the most after 7 d of chilling. Moreover, various alcohols formed after the 7 d of chilling of the chicken that was boiled at pHs of 8.0 and 9.0. Because of the oxidation and degradation of fat and proteins, the most altering volatile compounds were the reducing amines and the increasing aldehydes.
Collapse
Affiliation(s)
- Pattarabhorn Pakaweerachat
- Department of Food and Nutrition, Faculty of Home Economics Technology, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand
| | - Teerin Chysirichote
- Department of Food Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
6
|
Qiao M, Luo S, Z. Z, Cai X, Zhao X, Jiang Y, Miao B. Quality Assessment of Loquat under Different Preservation Methods Based on Physicochemical Indicators, GC–MS and Intelligent Senses. HORTICULTURAE 2024; 10:499. [DOI: 10.3390/horticulturae10050499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
To explore the effects of different preservation methods on the quality of loquat after fresh-keeping treatment, various preservation techniques were employed. These included natural preservation (NP), vacuum freezing preservation (VFP), vacuum at room temperature preservation (VP) and freezing preservation (FP). The quality assessment involved analyzing the effects of these preservation methods using physicochemical indexes, a colorimeter, an electronic nose (E-nose), an electronic tongue (E-tongue) and gas chromatography–mass spectrometry (GC–MS). The results showed minor differences in loquat quality under different preservation methods, with sensory scores ranging from 55 to 78 and ΔE values ranging from 11.92 to 18.59. Significant variations were observed in moisture content (ranging from 53.20 g/100 g to 87.20 g/100 g), calorie content (ranging from 42.55 Kcal/100 g to 87.30 Kcal/100 g), adhesion (ranging from 0.92 to 1.84 mJ) and hardness (ranging from 2.97 to 4.19 N) (p < 0.05). Additionally, the free amino acid content varied from 22.47 mg/g to 65.42 mg/g. GC–MS analysis identified a total of 47 volatile flavor substances in varieties of loquats, including 13 aldehydes, 9 esters, 6 ketones, 2 acids, 3 alcohols, 2 phenols, 3 pyrazines, 1 furan and 8 other substances. The relative content of aldehydes was significantly higher than that of other chemicals. The VFP and FP samples exhibited higher aldehyde content compared to the NP and VP samples. Moreover, Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) revealed 18 marked compounds that could differentiate between 5 loquat species. Analysis using E-nose and E-tongue indicated significant changes in the olfactory and gustatory senses of loquats following preservation. The VFP samples demonstrated the most effective preservation of loquat quality with minimal impact. This study provides some theoretical guidance for the home preservation of loquats.
Collapse
Affiliation(s)
- Mingfeng Qiao
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Siyue Luo
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
- College of Food, Sichuan Tourism University, Chengdu 610100, China
| | - Zherenyongzhong Z.
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
- College of Food, Sichuan Tourism University, Chengdu 610100, China
| | - Xuemei Cai
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Xinxin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Yuqin Jiang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Baohe Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| |
Collapse
|
7
|
Wang J, Wei BC, Zhai YR, Li KX, Wang CY. Non-volatile and volatile compound changes in blueberry juice inoculated with different lactic acid bacteria strains. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2587-2596. [PMID: 37984850 DOI: 10.1002/jsfa.13142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/07/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Lactic acid bacteria (LABs) are widely present in foods and affect the flavour of fermented cultures. This study investigates the effects of fermentation with Lactobacillus acidophilus JYLA-16 (La), Lactobacillus plantarum JYLP-375 (Lp), and Lactobacillus rhamnosus JYLR-005 (Lr) on the flavour profile of blueberry juice. RESULTS This study showed that all LABs strains preferentially used glucose rather than fructose as the carbon source during fermentation. Lactic acid was the main fermentation product, reaching 7.76 g L-1 in La-fermented blueberry juice, 5.86 g L-1 in Lp-fermented blueberry juice, and 6.41 g L-1 in Lr-fermented blueberry juice. These strains extensively metabolized quinic acid, whereas oxalic acid metabolism was almost unaffected. Sixty-four volatile compounds were identified using gas chromatography-ion mobility spectrometry (GC-IMS). All fermented blueberry juices exhibited decreased aldehyde levels. Furthermore, fermentation with La was dominated by alcohols, Lp was dominated by esters, and Lr was dominated by ketones. Linear discriminant analysis of the electronic nose and principal component analysis of the GC-IMS data effectively differentiated between unfermented and fermented blueberry juices. CONCLUSION This study informs LABs selection for producing desirable flavours in fermented blueberry juice and provides a theoretical framework for flavour detection. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Wang
- School of Biology, Food and Environment, Hefei University, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Bo-Cheng Wei
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Yan-Rong Zhai
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Ke-Xin Li
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Chu-Yan Wang
- School of Biology, Food and Environment, Hefei University, Hefei, China
| |
Collapse
|
8
|
Huang Y, Cao H, Pan M, Wang C, Sun B, Ai N. Unraveling volatilomics profiles of milk products from diverse regions in China. Food Res Int 2024; 179:114006. [PMID: 38342533 DOI: 10.1016/j.foodres.2024.114006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
To distinguish Chinese milks from different regions, 13 milk samples were gathered from 13 regions of China in this study: Inner Mongolia (IM), Xinjiang (XJ), Hebei (HB), Shanghai (SH), Beijing (BJ), Sichuan (SC), Ningxia (NX), Henan (HN), Tianjin (TJ), Qinghai (QH), Yunnan (YN), Guangxi (GX), and Tibet (XZ). Headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) combined with the electronic nose (E-nose) technology, was used to detect and analyze the volatile compounds in these milk samples. The qualitative and quantitative results identified 29 volatile chemicals, and we established a database of flavor profiles for the main milk-producing regions in China. E-nose analysis revealed variations in the odor of milk across different areas. Furthermore, results from partial least squares discriminant analysis (PLS-DA) and odor activity values (OAVs) suggested that seven volatile compounds: decane, 2-heptanone, 2-undecanone, 2-nonanone, 1-hexadecanol, 1-octen-3-ol, and (E)-2-nonenal, could be considered as key flavor compounds in Chinese milk products.
Collapse
Affiliation(s)
- Yun Huang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China
| | - Hongfang Cao
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, PR China; Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, PR China
| | - Minghui Pan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China
| | - Caiyun Wang
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, PR China; Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, PR China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China
| | - Nasi Ai
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China.
| |
Collapse
|