1
|
Fakhri Bafghi MS, Khoshnam Rad N, Roostaei G, Nikfar S, Abdollahi M. The reality of modeling irritable bowel syndrome: progress and challenges. Expert Opin Drug Discov 2025; 20:433-445. [PMID: 40162721 DOI: 10.1080/17460441.2025.2481264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/14/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that is often therapeutically challenging. While research has advanced our understanding of IBS pathophysiology, developing precise models to predict drug response and treatment outcomes remains a significant hurdle. AREAS COVERED This perspective provides an overview of the use of animal models alongside cutting-edge technologies used to bring drugs from bench to bedside.Furthermore, the authors examine the progress and limitations of IBS modeling. The authors further discuss the challenges of traditional animal models and gives a spotlight to the potential of innovative technologies, such as organ-on-chip systems, computational models, and artificial intelligence (AI). These approaches intend to enhance both the understanding and treatment of IBS. EXPERT OPINION Although animal models have been central to understanding IBS research, they have limitations. The future of IBS research resides in integrating organ-on-chip systems and utilizing modern technological developments, such as AI. These tools will enable the design of more effective treatment strategies and improve patients' overall well-being. To achieve this, collaboration between experts from various disciplines is essential to improve these models and guarantee their clinical application and reliability.
Collapse
Affiliation(s)
- Maryam S Fakhri Bafghi
- Department of Internal Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Khoshnam Rad
- Thoracic Research Center, Imam Khomeini Hospital Complex, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazal Roostaei
- Thoracic Research Center, Imam Khomeini Hospital Complex, Tehran, Iran
- Rasoul Akram Hospital Clinical Research Development Center, School of Medicine, Rasool Akram Medical Complex, Iran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wang Q, Liu X, Song D, Wang Q, Wu M, Zhu Z, Jin M, Liu S, Zhang J, Wang R. Exploring the mechanism and effective compounds of Changan Granule on diarrhea-predominant irritable bowel syndrome via regulating 5-hydroxytryptamine signaling pathway in brain-gut axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156350. [PMID: 39756311 DOI: 10.1016/j.phymed.2024.156350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/25/2024] [Accepted: 12/24/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Changan Granule (CAG) is a drug product developed from a traditional Chinese medicine (TCM) empirical prescription for diarrhea-predominant irritable bowel syndrome (IBS-D). The action mechanism and effective compounds of CAG in the treatment of IBS-D are not well understood. PURPOSE This study aimed to investigate the effectiveness, action mechanism and effective compounds of CAG for treating IBS-D. METHODS Network pharmacology was used to screen the related pathways and active compounds of CAG in the treatment of IBS-D. Neonatal mother-infant separation, acetic acid enema and colorectal dilation were employed to construct IBS-D model for in vivo study. The effectiveness of CAG was evaluated in accordance with the results of body weight measurement, fecal water content determination, abdominal withdraw reflex test, open field test, sucrose preference test, forced swimming test and hematoxylin-eosin (HE) staining. The protein and mRNA levels of key molecules regulated by CAG were assessed through enzyme-linked immunosorbent assay (ELISA), western blotting, and reverse transcription quantitative polymerase chain reaction (RT-qPCR). The active compounds from CAG screened by network pharmacology were investigated with Caco-2 and RIN-14B cell models in vitro. RESULTS Network pharmacological analysis showed that CAG regulated 5-hydroxytryptamine (5-HT) signaling pathway and tetrahydropalmatine, formononetin and corydaline might be the potential effective compounds. The validation experiments showed that CAG restored the decreased body weight, and alleviated intestinal sensitivity, low-grade inflammation, diarrhea, frequent defecation, anxiety and depression of IBS-D rats through regulating the expression levels of 5-HT, tryptophan hydroxylase (TPH)1/2, serotonin transporter (SERT), 5-hydroxytryptamine-3 and -4 receptors (5-HT3R and 5-HT4R) in brain-gut axis (BGA). Tetrahydropalmatine and formononetin were confirmed to be the potential effective compounds of CAG in regulating 5-HT signaling pathway. CONCLUSION CAG exhibits therapeutic effect on IBS-D rats through regulating 5-HT signaling pathway in BGA. Tetrahydropalmatine and formononetin are major potential effective compounds. Our findings provide scientific basis for the clinical use and drug development of CAG for IBS-D.
Collapse
Affiliation(s)
- Qiaoxia Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxuan Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongxing Song
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qingqing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengjiao Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhihao Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mingxuan Jin
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Siqi Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Rufeng Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
3
|
Pal S, Arisha R, Mazumder PM. A systematic review of preclinical studies targeted toward the management of co-existing functional gastrointestinal disorders, stress, and gut dysbiosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:25-46. [PMID: 39096376 DOI: 10.1007/s00210-024-03332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Modern dietary habits and stressed lifestyle have escalated the tendency to develop functional gastrointestinal disorders (FGIDs) through alteration in the gut-brain-microbiome axis. Clinical practices use symptomatic treatments, neglect root causes, and prolong distress in patients. The past decade has seen the evolution of various interventions to attenuate FGIDs. But clinical translation of such studies is very rare mostly due to lack of awareness. The aim of this review is to meticulously integrate different studies and bridge this knowledge gap. Literature between 2013 and 2023 was retrieved from PubMed, ProQuest, and Web of Science. The data was extracted based on the PRISMA guidelines and using the SYRCLE's risk of bias and the Cochrane Risk of Bias tools, quality assessment was performed. The review has highlighted molecular insights into the coexistence of FGIDs, stress, and gut dysbiosis. Furthermore, novel interventions focusing on diet, probiotics, herbal formulations, and phytoconstituents were explored which mostly had a multitargeted approach for the management of the diseases. Scientific literature implied positive interactions between the interventions and the gut microbiome by increasing the relative abundance of beneficial bacteria and reducing stress-related hormones. Moreover, the interventions reduced intestinal inflammation and regulated the expression of epithelial tight junction proteins in different in vivo models. This systematic review delves deep into the preclinical interventions to manage coexisting FGIDs, stress, and gut dysbiosis. However, in most of the discussed studies, long-term risks and toxicity profile of the interventions are lacking. So, it is necessary to highlight them for improved clinical outcomes.
Collapse
Affiliation(s)
- Shreyashi Pal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ruhi Arisha
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
4
|
Wu R, Zhang Z, Xu Q, Liu F, Zhan Y, Wang Q, Du L, Tang X. Integration of network pharmacology and experimental verifications reveals the Bian-Se-Tong mixture can alleviate constipation in STC rats by reducing apoptosis of Cajal cells via activating PI3K-Akt signaling pathway. Heliyon 2024; 10:e28022. [PMID: 38586320 PMCID: PMC10998068 DOI: 10.1016/j.heliyon.2024.e28022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Bian-Se-Tong mixture (BSTM) is an optimized formulation based on the classical prescription "Zhizhu pill", which is widely used in the clinical treatment of slow-transit constipation (STC). The potential molecular mechanism of BSTM therapy for STC was investigated by network pharmacology prediction combined with animal experiments. The active components of BSTM were screened via the TCMSP platform. The GeneCards, OMIM and DrugBank databases were used to search for STC targets. With the help of the Biogenet tool, a protein interaction network between drugs and disease targets was constructed, and the intersection network of the two was extracted to obtain the key targets of BSTM in the treatment of STC. GO and KEGG enrichment analyses of key targets were carried out with Metascape. Loperamide hydrochloride was used to establish an STC rat model, and the key targets and related pathways were preliminarily verified. The important signaling pathways included the PI3K-Akt, MAPK, IL-17, cAMP, and cell cycle signaling pathways. The experimental results showed that BSTM treatment increased the body weight of STC rats and increased the fecal particle number, fecal water content and intestinal carbon ink promotion rate within 24 h. Further pathological changes in the colon of the rats were also observed. In-depth mechanistic studies have shown that BSTM can significantly reduce the apoptosis of intestinal Cajal cells, downregulate the expression of Bax and c-Caspase 3, upregulate the expression of Bcl-2 and c-kit, and promote the phosphorylation of AKT. The results showed that BSTM can significantly relieve constipation in STC rats via a mechanism related to activating the PI3K-Akt signaling pathway and improving Cajal cell apoptosis.
Collapse
Affiliation(s)
- Rong Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Zhibin Zhang
- North Sichuan Medical College, Nanchong 637000, China
| | - Qingxia Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Fang Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
- North Sichuan Medical College, Nanchong 637000, China
| | - Yu Zhan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Qiuxiao Wang
- North Sichuan Medical College, Nanchong 637000, China
| | - Lijuan Du
- Department of Anorectal, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China
- Department of Anorectal, Chengdu Thrid People's Hospital, Chengdu 610000, China
| | - Xuegui Tang
- North Sichuan Medical College, Nanchong 637000, China
| |
Collapse
|
5
|
Cui L, Zhang B, Zou S, Liu J, Wang P, Li H, Zhang Z. Fenchone Ameliorates Constipation-Predominant Irritable Bowel Syndrome via Modulation of SCF/c-Kit Pathway and Gut Microbiota. J Microbiol Biotechnol 2024; 34:367-378. [PMID: 38073315 PMCID: PMC10940742 DOI: 10.4014/jmb.2308.08011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 03/01/2024]
Abstract
In this study we sought to elucidate the therapeutic effects of fenchone on constipation-predominant irritable bowel syndrome (IBS-C) and the underlying mechanisms. An IBS-C model was established in rats by administration of ice water by gavage for 14 days. Fenchone increased the reduced body weight, number of fecal pellets, fecal moisture, and intestinal transit rate, and decreased the enhanced visceral hypersensitivity in the rat model of IBS-C. In addition, fenchone increased the serum content of excitatory neurotransmitters and decreased the serum content of inhibitory neurotransmitters in the IBS-C rat model. Meanwhile, western blot and immunofluorescence experiments indicated that fenchone increased the expressions of SCF and c-Kit. Furthermore, compared with the IBS-C model group, fenchone increased the relative abundance of Lactobacillus, Blautia, Allobaculum, Subdoligranulum, and Ruminococcaceae_UCG-008, and reduced the relative abundance of Bacteroides, Enterococcus, Alistipes, and Escherichia-Shigella on the genus level. Overall, fenchone ameliorates IBS-C via modulation of the SCF/c-Kit pathway and gut microbiota, and could therefore serve as a novel drug candidate against IBS-C.
Collapse
Affiliation(s)
- Li Cui
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China
| | - Bin Zhang
- Digestive Department, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211200, Jiangsu, P.R. China
| | - Shuting Zou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China
| | - Jing Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China
| | - Pingrong Wang
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210016, P.R. China
| | - Hui Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China
| |
Collapse
|