1
|
Li J, Chen Z, Su B, Zhang Y, Wang Z, Ma K, Lu B, Ren J, Xue J. Evaluation of Functional Quality of Maize with Different Grain Colors and Differences in Enzymatic Properties of Anthocyanin Metabolism. Foods 2025; 14:544. [PMID: 40001989 PMCID: PMC11854767 DOI: 10.3390/foods14040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Waxy maize (Zea mays L. sinensis kulesh) contains a lot of nutrients, and has a long history of cultivation and extensive consumption. In this study, six waxy maize varieties of white (J18 and W2000), yellow (J41 and J7), and black (J10 and J20) were selected as experimental materials, and the functional nutrients and the differences in anthocyanin anabolic pathways in maize kernels at 14, 18, 22, and 26 days after pollination were determined. The result show that the varieties and kernel development stages had significant effect on the carotenoid, soluble sugar, vitamin C, anthocyanin, and mineral element content. The black waxy maize varieties had a higher anthocyanin content, which plays an important role in maize kernel coloration, whereas the yellow and black waxy maize varieties exhibit a greater abundance of mineral elements. Furthermore, the phenylalanine content, as well as the activities of phenylalanine ammonia lyase (PAL), chalcone isomerase (CHI), dihydroflavonol reductase (DFR), and flavonoid 3-glucosyltransferase (UFGT), played a significant role in the anthocyanin biosynthetic pathway. In conclusion, the comprehensive functional quality of waxy maize decreased with the delay of kernel development stage, and the black waxy maize varieties demonstrated superior functional quality. The PAL and CHI played a primary role in the initial phase of anthocyanin accumulation, while UFGT gradually assumed control in the subsequent stages.
Collapse
Affiliation(s)
- Jing Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (J.L.); (Z.C.); (B.S.); (Y.Z.); (Z.W.); (B.L.)
- Taigu District Party School of Jinzhong City of the Communist Party of China, Taigu, Jinzhong 030800, China
| | - Zhanqiang Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (J.L.); (Z.C.); (B.S.); (Y.Z.); (Z.W.); (B.L.)
| | - Baojie Su
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (J.L.); (Z.C.); (B.S.); (Y.Z.); (Z.W.); (B.L.)
| | - Yanan Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (J.L.); (Z.C.); (B.S.); (Y.Z.); (Z.W.); (B.L.)
| | - Zhiping Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (J.L.); (Z.C.); (B.S.); (Y.Z.); (Z.W.); (B.L.)
| | - Ke Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Boyu Lu
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (J.L.); (Z.C.); (B.S.); (Y.Z.); (Z.W.); (B.L.)
| | - Jianhong Ren
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China;
| | - Jianfu Xue
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (J.L.); (Z.C.); (B.S.); (Y.Z.); (Z.W.); (B.L.)
| |
Collapse
|
2
|
Wang X, Li H, Wang S, Ruan M, Li Y, Zhu L, Dong Z, Long Y. Genome-wide identification and functional roles relating to anthocyanin biosynthesis analysis in maize. BMC PLANT BIOLOGY 2025; 25:57. [PMID: 39810086 PMCID: PMC11734362 DOI: 10.1186/s12870-025-06053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Anthocyanin is an important class of water-soluble pigments that are widely distributed in various tissues of plants, and it not only facilitates diverse color changes but also plays important roles in various biological processes. Maize silk, serving as an important reproductive organ and displaying a diverse range of colors, plays an indispensable role in biotic resistance through its possession of anthocyanin. However, the copy numbers, characteristics, and expression patterns of genes involved in maize anthocyanin biosynthesis are not fully understood. In this study, gene numbers, distribution, structure, cis-elements of the anthocyanin synthetic gene family were identified, and then the potential transcriptional factors were predicted by two analyzed methods. Finally, genes involved in maize silk pigment were screened by un-targeted metabolism analysis. RESULTS Ten gene families involved in the maize anthocyanin biosynthesis pathway were identified, and 142 synthetic genes were obtained. These anthocyanin biosynthetic genes have high copy numbers and are normally clustered on chromosomes. The promoters of these synthetic genes contain various cis-elements and the gene expression patterns and transcriptional regulatory networks were analyzed. These genes are distributed on different chromosomes and gene expression patterns vary across different tissues in maize. Specifically, these genes often exhibit higher expression in the stem, leaves, and seeds. Ten highly expressed genes in silks were identified. Based on un-targeted metabolites detection in the silks of four maize representative inbred lines with different colors, two main differential anthocyanin components were identified. Furthermore, the gene expression patterns of the ten highly expressed genes and their potential interacting transcriptional factors were analyzed across the four inbred lines. CONCLUSIONS The results in this study show a through picture of maize anthocyanin synthetic genes, and the structure and function of genes related to anthocyanin biosynthesis in maize could be further investigated.
Collapse
Affiliation(s)
- Xiaofang Wang
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huangai Li
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuai Wang
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Meiqi Ruan
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yiping Li
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lei Zhu
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing, 100192, China.
| | - Yan Long
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing, 100192, China.
| |
Collapse
|
3
|
Lu B, An H, Song X, Yang B, Jian Z, Cui F, Xue J, Gao Z, Du T. Enhancement of Nutritional Substance, Trace Elements, and Pigments in Waxy Maize Grains through Foliar Application of Selenite. Foods 2024; 13:1337. [PMID: 38731708 PMCID: PMC11083303 DOI: 10.3390/foods13091337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Selenium (Se) is a micronutrient known for its essential role in human health and plant metabolism. Waxy maize (Zea mays L. sinensis kulesh)-known for its high nutritional quality and distinctive flavor-holds significant consumer appeal. Therefore, this study aims to assess the effects of foliar Se spraying on the nutritional quality of waxy maize grains, with a focus on identifying varietal differences and determining optimal Se dosage levels for maximizing nutritional benefits. We employed a two-factor split-plot design to assess the nutritional quality, trace elements, and pigment content of jinnuo20 (J20) and caitiannuo1965 (C1965) at the milk stage after being subjected to varying Se doses sprayed on five leaves. Our findings indicate superior nutrient content in J20 compared to C1965, with both varieties exhibiting optimal quality under Se3 treatment, falling within the safe range of Se-enriched agricultural products. JS3 (0.793) demonstrated the highest overall quality, followed by JS2 (0.606), JS4 (0.411), and JS1 (0.265), while CS0 had the lowest (-0.894). These results underscore the potential of foliar biofortification to enhance the functional component contents of waxy maize grains.
Collapse
Affiliation(s)
- Boyu Lu
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (B.L.)
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-Quality and Efficiency in Loess Plateau, Shanxi Agricultural University, Jinzhong 030801, China
| | - Haoyuan An
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (B.L.)
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-Quality and Efficiency in Loess Plateau, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xinli Song
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (B.L.)
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-Quality and Efficiency in Loess Plateau, Shanxi Agricultural University, Jinzhong 030801, China
| | - Bosen Yang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (B.L.)
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-Quality and Efficiency in Loess Plateau, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhuqing Jian
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (B.L.)
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-Quality and Efficiency in Loess Plateau, Shanxi Agricultural University, Jinzhong 030801, China
| | - Fuzhu Cui
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (B.L.)
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-Quality and Efficiency in Loess Plateau, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jianfu Xue
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (B.L.)
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-Quality and Efficiency in Loess Plateau, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (B.L.)
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-Quality and Efficiency in Loess Plateau, Shanxi Agricultural University, Jinzhong 030801, China
| | - Tianqing Du
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (B.L.)
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-Quality and Efficiency in Loess Plateau, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
4
|
Huang B, Zhao G, Zou X, Cheng X, Li S, Yang L. Feasibility of replacing waxy rice with waxy or sweet-waxy corn viewed from the structure and physicochemical properties of starches. Food Res Int 2024; 182:114178. [PMID: 38519192 DOI: 10.1016/j.foodres.2024.114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
To explore the feasibility of substituting waxy rice with waxy or sweet-waxy corn, eight varieties of waxy and sweet-waxy corns were selected, including three self-cultivated varieties (Feng nuo 168, Feng nuo 211, and Feng nuo 10). Their starches were isolated and used as research objects, and commercially available waxy rice starch (CAWR) and waxy corn starch (CAWC) were used as controls. X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, rapid viscosity analyzer, and rotational rheometer were used to analyze their physicochemical and structural characteristics. The morphologies of all corn starch granules were generally oval or round, with significant differences in particle size distributions. All ten starches exhibited a typical A-type crystal structure; however, their relative crystallinity varied from 20.08% to 31.43%. Chain length distribution analysis showed that the A/B ratio of Jing cai tian nuo 18 and Feng nuo 168 was similar to that of CAWR. Peak viscosities of corn starches were higher than that of CAWR, except for Feng nuo 10, while their setback values were lower than that of CAWR. Except for Feng nuo 10, the paste transparency of corn starches was higher than that of CAWR (10.77%), especially for Jing cai tian nuo 18 (up to 24%). In summary, Jing cai tian nuo 18 and Feng nuo 168 are promising candidates to replace CAWR in developing various rice-based products.
Collapse
Affiliation(s)
- Biao Huang
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Gongqi Zhao
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Xiaochen Zou
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Xinxin Cheng
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China
| | - Liping Yang
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China.
| |
Collapse
|
5
|
Wang F, Chen J, Tang R, Wang R, Ahmad S, Liu Z, Peng D. Research Progress on Anthocyanin-Mediated Regulation of 'Black' Phenotypes of Plant Organs. Curr Issues Mol Biol 2023; 45:7242-7256. [PMID: 37754242 PMCID: PMC10527681 DOI: 10.3390/cimb45090458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
The color pattern is one of the most important characteristics of plants. Black stands out among the vibrant colors due to its rare and distinctive nature. While some plant organs appear black, they are, in fact, dark purple. Anthocyanins are the key compounds responsible for the diverse hues in plant organs. Cyanidin plays an important role in the deposition of black pigments in various plant organs, such as flower, leaf, and fruit. A number of structural genes and transcription factors are involved in the metabolism of anthocyanins in black organs. It has been shown that the high expression of R2R3-MYB transcription factors, such as PeMYB7, PeMYB11, and CsMYB90, regulates black pigmentation in plants. This review provides a comprehensive overview of the anthocyanin pathways that are involved in the regulation of black pigments in plant organs, including flower, leaf, and fruit. It is a great starting point for further investigation into the molecular regulation mechanism of plant color and the development of novel cultivars with black plant organs.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.W.); (J.C.); (R.T.); (R.W.); (S.A.)
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.W.); (J.C.); (R.T.); (R.W.); (S.A.)
| |
Collapse
|