1
|
Cheng Q, Zhao J, Liu C, Ge H, Qin J, Wang Y. Thiol-modified hyaluronic acid and hydroxyl radical-induced oxidation synergistically enhance the gelling capacity of ginkgo seed proteins. Food Chem 2025; 473:143044. [PMID: 39884226 DOI: 10.1016/j.foodchem.2025.143044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
The objective of this work was to investigate the effect of synthetic thiol-modified hyaluronic acid (HASH) on the gelation properties of ginkgo seed protein isolate (GSPI) under non-oxidizing (NOX) or oxidizing (OX) conditions. Under NOX conditions, HASH mediated the disruption of disulfide bonds, leading to a dose-dependent dissociation of GSPI. Conversely, in OX conditions, hydroxyl radical-induced oxidation facilitated the formation of interprotein disulfide bonds. Incremental increases in HASH concentration were found to significantly enhance the textural characteristics of the GSPI gel, achieving optimal elasticity. Moreover, HASH incorporation conferred increased rigidity and porosity to the gel matrix, markedly improving the water holding capacity and reducing the protein leachability. Additionally, OX conditions amplified the beneficial effect of HASH on gel strength and hydration properties. This study elucidates a novel approach for enhancing the gel properties of GSPI and modulating protein-polysaccharide interaction through the chemical modification of natural polysaccharides.
Collapse
Affiliation(s)
- Qiao Cheng
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Zhao
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA, 92182
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA, 92182
| | - Huifang Ge
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, PR China
| | - Jiawei Qin
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yaosong Wang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Xue H, Gao Y, Shi Z, Gao H, Xie K, Tan J. Interactions between polyphenols and polysaccharides/proteins: Mechanisms, effect factors, and physicochemical and functional properties: A review. Int J Biol Macromol 2025; 309:142793. [PMID: 40194573 DOI: 10.1016/j.ijbiomac.2025.142793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
Polyphenols have attracted much attention in the food industry and nutrition because of their unique biological activities. However, the health benefits of polyphenols are compromised due to their structural instability and sensitivity to the external environment. The interaction between polyphenols and polysaccharides/proteins largely determines the stability and functional characteristics of polyphenols in food processing and storage. Hence, this topic has attracted widespread attention in recent years. This review initially outlines the basic properties of polyphenols and their applications in food. Subsequently, the interaction mechanisms between polyphenols and polysaccharides/proteins are discussed in detail including non-covalent bonding, covalent modification, and conformational changes. These interactions can display profound impacts on the nutritional value, taste, stability, and safety of food. Additionally, this article also systematically reviews the influencing factors (type, concentration, temperature, pH, and other factors) of interaction between polyphenols and proteins/polysaccharides. Finally, this paper also summarizes systematically the effects of the interaction between polyphenols and polysaccharides/proteins on the physicochemical and functional properties of polyphenols/proteins. The findings provide prospects for the application of composite materials in food preservation, functional food development, and nanocarrier development, which can provide theoretical references for the in-depth development of polyphenols in the food industry.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Zhangmeng Shi
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Haiyan Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, No. 88 East Fuxing Road, Yuetang District, Xiangtan, 411100, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
3
|
Cheng Q, Liu C, Zhao J, Guo F, Qin J, Wang Y. Hyaluronic acid promotes heat-induced gelation of ginkgo seed proteins. Food Chem 2025; 463:141114. [PMID: 39243628 DOI: 10.1016/j.foodchem.2024.141114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/27/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
This study aimed to investigate how varying concentrations (0.01-0.5 %, w/v) and molecular weights (50, 500, 1500 kDa) of hyaluronic acid (HA) affect the physicochemical properties of heat-induced ginkgo seed protein isolate (GSPI)-HA composite gel. Incorporating HA increased viscosity (up to 14 times) and charge (up to 23 %) of GSPI-HA aggregates, while reducing particle size (up to 31 %) and improving gel texture, particularly with high molecular weight HA. However, high concentrations (0.5 %, w/v) of HA weakened gel texture. Non-covalent bonds primarily drive the formation of a continuous gel network between HA and GSPI, resulting in small pores and enhanced hydration properties. With increasing HA molecular weight, non-covalent interactions between GSPI and HA increased, leading to improved gel thermal stability. Overall, the study suggests that manipulating the molecular weight and concentration of HA can enhance the gelling properties of GSPI, leading to the development of a diverse array of GSPI-HA composite gels with varied properties.
Collapse
Affiliation(s)
- Qiao Cheng
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA
| | - Jing Zhao
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA
| | - Fengxian Guo
- Fujian Province Key Laboratory for Development of Bioactive Material from Marine Algae, College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Jiawei Qin
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yaosong Wang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Xu Y, Zhou Z. Design and characterization of EGCG conjugated walnut protein cold-set gels for quercetin encapsulation. Food Res Int 2024; 197:115258. [PMID: 39593340 DOI: 10.1016/j.foodres.2024.115258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
While heat treatment is a conventional method for the gelation of alkaline-extracted walnut protein isolates (AWPI), it can limit the incorporation of heat-sensitive ingredients. This study explored a novel approach to fabricate cold-set gels from epigallocatechin-3-gallate (EGCG) conjugated AWPI (AWPI-EGCG). EGCG conjugation effectively inhibited the thermal gelation of AWPI while promoting the formation of soluble aggregates upon heat treatment. AWPI-EGCG cold-set gels were then successfully fabricated through acidification with glucono-δ-lactone (GDL). The rheological study revealed that the storage modulus and yield stress of the cold-set gels were positively correlated with the GDL concentration and the EGCG conjugation degree. However, higher concentrations of GDL were associated with the reduced yield strain of the gels. Texture analysis indicated an increase in gel hardness with increasing GDL concentration, accompanied by a decrease in springiness. Microstructural examination by scanning electron microscopy revealed that the AWPI-EGCG cold-set gels with 0.3 % GDL exhibited smaller pores with thinner and smoother internal walls, while those with 0.9 % GDL exhibited relatively larger pores with thicker and denser walls. In addition, the AWPI-EGCG cold-set gels showed promising quercetin encapsulation capacities and controlled release properties.
Collapse
Affiliation(s)
- Yanfei Xu
- School of Food Science and Bioengineering, Xihua University, Chengdu, Sichuan Province 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Zheng Zhou
- School of Food Science and Bioengineering, Xihua University, Chengdu, Sichuan Province 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
5
|
Pan Q, Xie L, Zhu H, Zong Z, Wu D, Liu R, He B, Pu Y. Curcumin-incorporated EGCG-based nano-antioxidants alleviate colon and kidney inflammation via antioxidant and anti-inflammatory therapy. Regen Biomater 2024; 11:rbae122. [PMID: 39539979 PMCID: PMC11558062 DOI: 10.1093/rb/rbae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 10/05/2024] [Indexed: 11/16/2024] Open
Abstract
Natural remedies are gaining attention as promising approaches to alleviating inflammation, yet their full potential is often limited by challenges such as poor bioavailability and suboptimal therapeutic effects. To overcome these limitations, we have developed a novel nano-antioxidant (EK) based on epigallocatechin gallate (EGCG) aimed at enhancing the oral and systemic bioavailability, as well as the anti-inflammatory efficacy, of curcumin (Cur) in conditions such as acute colon and kidney inflammation. EK is synthesized using a straightforward Mannich reaction between EGCG and L-lysine (K), resulting in the formation of EGCG oligomers. These oligomers spontaneously self-assemble into nanoparticles with a spherical morphology and an average diameter of approximately 160 nm. In vitro studies reveal that EK nanoparticles exhibit remarkable radical-scavenging capabilities and effectively regulate redox processes within macrophages, a key component in the body's inflammatory response. By efficiently encapsulating curcumin within these EK nanoparticles, we create Cur@EK, a formulation that demonstrates a synergistic anti-inflammatory effect. Specifically, Cur@EK significantly reduces the levels of pro-inflammatory cytokines TNF-α and IL-6 while increasing the anti-inflammatory cytokine IL-10 in lipopolysaccharide-stimulated macrophages, highlighting its potent anti-inflammatory properties. When administered either orally or intravenously, Cur@EK shows superior bioavailability compared to free curcumin and exhibits pronounced anti-inflammatory effects in mouse models of ulcerative colitis and acute kidney injury. These findings suggest that the EK nano-antioxidant platform not only enhances the bioavailability of curcumin but also amplifies its therapeutic impact, offering a promising new avenue for the treatment and management of inflammation in both oral and systemic contexts.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Huang Zhu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Zhihui Zong
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
6
|
Zhao Y, Tian R, Zhang Q, Jiang L, Wang J, Zhang Y, Sui X. Enhancing the properties of soy protein isolate and dialdehyde starch films for food packaging applications through tannic acid crosslinking. Carbohydr Polym 2024; 332:121903. [PMID: 38431410 DOI: 10.1016/j.carbpol.2024.121903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
The utilization of naturally derived biodegradable polymers, including proteins, polysaccharides, and polyphenols, holds significant promise in addressing environmental concerns and reducing reliance on nonrenewable resources. This study aimed to develop films with enhanced UV resistance and antibacterial capabilities by covalently cross-linking soy protein isolate (SPI) with dialdehyde starch (DAS) through the incorporation of tannic acid (TA). The covalent crosslinking of TA with DAS and SPI was shown to establish a stable chemical cross-linking network. The tensile strength of the resulting SPI/DAS/15TA film exhibited a remarkable increase of 208.27 % compared to SPI alone and 52.99 % compared to SPI/DAS film. Notably, the UV absorption range of SPI/DAS/10TA films extended from 200 nm to 389 nm. This augmentation can be attributed to the oxidation of TA's phenolic hydroxyl groups to quinone under alkaline conditions, which then facilitated cross-linking with the SPI chain via Michael addition and Schiff base reactions. Furthermore, the film demonstrated robust antibacterial properties due to the incorporation of TA. Collectively, the observed properties highlight the significant potential of the SPI/DAS/10TA film for applications in food packaging, where its enhanced mechanical strength, UV resistance, and antibacterial characteristics can contribute to improved product preservation and safety.
Collapse
Affiliation(s)
- Yuan Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ran Tian
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qin Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Zhang L, Ge H, Zhao J, Liu C, Wang Y. L-Theanine Improves the Gelation of Ginkgo Seed Proteins at Different pH Levels. Gels 2024; 10:131. [PMID: 38391461 PMCID: PMC10887952 DOI: 10.3390/gels10020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
L-theanine (L-Th), a non-protein amino acid naturally found in teas and certain plant leaves, has garnered considerable attention due to its health benefits and potential to modify proteins such as ginkgo seed proteins, which have poor gelling properties, thereby expanding their applications in the food industry. The objective of this study was to investigate the impact of varying concentrations of L-Th (0.0%, 0.5%, 1.0%, and 2.0%) on the gelling properties of ginkgo seed protein isolate (GSPI) at various pH levels (5.0, 6.0, and 7.0). The GSPI gels exhibited the highest strength at a pH of 5.0 (132.1 ± 5.6 g), followed by a pH of 6.0 (95.9 ± 3.9 g), while a weak gel was formed at a pH of 7.0 (29.5 ± 0.2 g). The incorporation of L-Th increased the hardness (58.5-231.6%) and springiness (3.0-9.5%) of the GSPI gels at a pH of 7.0 in a concentration-dependent manner. However, L-Th did not enhance the gel strength or water holding capacity at a pH of 5.0. The rheological characteristics of the GSPI sols were found to be closely related to the textural properties of L-Th-incorporated gels. To understand the underlying mechanism of L-Th's effects, the physicochemical properties of the sols were analyzed. Specifically, L-Th promoted GSPI solubilization (up to 7.3%), reduced their hydrophobicity (up to 16.2%), reduced the particle size (up to 40.9%), and increased the ζ potential (up to 21%) of the sols. Overall, our findings suggest that L-Th holds promise as a functional ingredient for improving gel products.
Collapse
Affiliation(s)
- Luyan Zhang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huifang Ge
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jing Zhao
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA
| | - Yaosong Wang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Zhang H, Wu J, Cheng Y. Mechanical Properties, Microstructure, and In Vitro Digestion of Transglutaminase-Crosslinked Whey Protein and Potato Protein Hydrolysate Composite Gels. Foods 2023; 12:foods12102040. [PMID: 37238858 DOI: 10.3390/foods12102040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The production of animal protein usually leads to higher carbon emissions than that of plant protein. To reduce carbon emissions, the partial replacement of animal protein with plant protein has attracted extensive attention; however, little is known about using plant protein hydrolysates as a substitute. The potential application of 2 h-alcalase hydrolyzed potato protein hydrolysate (PPH) to displace whey protein isolate (WPI) during gel formation was demonstrated in this study. The effect of the ratios (8/5, 9/4, 10/3, 11/2, 12/1, and 13/0) of WPI to PPH on the mechanical properties, microstructure, and digestibility of composite WPI/PPH gels was investigated. Increasing the WPI ratio could improve the storage modulus (G') and loss modulus (G″) of composite gels. The springiness of gels with the WPH/PPH ratio of 10/3 and 8/5 was 0.82 and 0.36 times higher than that of the control (WPH/PPH ratio of 13/0) (p < 0.05). In contrast, the hardness of the control samples was 1.82 and 2.38 times higher than that of gels with the WPH/PPH ratio of 10/3 and 8/5 (p < 0.05). According to the International Organization for Standardization of Dysphagia Diet (IDDSI) testing, the composite gels belonged to food level 4 in the IDDSI framework. This suggested that composite gels could be acceptable to people with swallowing difficulties. Confocal laser scanning microscopy and scanning electron microscopy images illustrated that composite gels with a higher ratio of PPH displayed thicker gel skeletons and porous networks in the matrix. The water-holding capacity and swelling ratio of gels with the WPH/PPH ratio of 8/5 decreased by 12.4% and 40.8% when compared with the control (p < 0.05). Analysis of the swelling rate with the power law model indicated that water diffusion in composite gels belonged to non-Fickian transport. The results of amino acid release suggested that PPH improved the digestion of composite gels during the intestinal stage. The free amino group content of gels with the WPH/PPH ratio of 8/5 increased by 29.5% compared with the control (p < 0.05). Our results suggested that replacing WPI with PPH at the ratio of 8/5 could be the optimal selection for composite gels. The findings indicated that PPH could be used as a substitute for whey protein to develop new products for different consumers. Composite gels could deliver nutrients such as vitamins and minerals to develop snack foods for elders and children.
Collapse
Affiliation(s)
- Haowei Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Juan Wu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yu Cheng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|