1
|
Shao L, Wang L, Li Y, Ma L, Jiang H, Liu F, Jiang S, Bai T, Yang S. Transcriptomic and metabolomic analyses of the antimicrobial activity of phenoxyethanol against phylotype IA1 and II Cutibacterium acnes. J Appl Microbiol 2025; 136:lxaf089. [PMID: 40261688 DOI: 10.1093/jambio/lxaf089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/30/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
AIMS Phenoxyethanol is a broad-spectrum antimicrobial agent widely used in cosmetic formulations. However, its antibacterial effects on different skin bacteria, particularly the predominant Cutibacterium acnes and its various phylotypes, remain unclear. The objective of this study was to examine the antimicrobial effects of phenoxyethanol on C. acnes and explore the mechanism. METHODS AND RESULTS Phenoxyethanol exhibited strong antimicrobial effects against both C. acnes ATCC6919 (phylotype IA1) and CCSM0331 (phylotype II), achieving a minimum inhibitory concentration (MIC) of 0.5% (v/v). Sub-MIC concentrations showed a stronger inhibitory effect on CCSM0331. RNA-seq and metabolomic analyses revealed that phenoxyethanol disrupted cell membrane integrity and influenced essential metabolic pathways, such as energy metabolism, amino acid metabolism, and pyrimidine metabolism. Additionally, glycolysis and the Wood-Werkman cycle were inhibited in CCSM0331 but enhanced in ATCC6919. The expression of genes involved in porphyrin metabolism, associated with inflammation, was significantly reduced. CONCLUSIONS Phenoxyethanol exhibits the antimicrobial activity against C. acnes, with differential effects on phylotypes, targeting critical metabolic pathways and cellular processes. These findings indicate its potential for acne treatment.
Collapse
Affiliation(s)
- Li Shao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Lizhuang Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Yan Li
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong 250101, P. R. China
| | - Laiji Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Hong Jiang
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong 250101, P. R. China
| | - Fei Liu
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong 250101, P. R. China
| | - Shanshan Jiang
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong 250101, P. R. China
| | - Tianming Bai
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong 250101, P. R. China
| | - Suzhen Yang
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong 250101, P. R. China
| |
Collapse
|
2
|
Shao L, Huang J, Li Y, Ma L, Niu Y, Jiang W, Yuan C, Bai T, Yang S. Antioxidant Activities of the Cell-Free Supernatant of a Potential Probiotic Cutibacterium acnes Strain CCSM0331, Isolated From a Healthy Skin. J Cosmet Dermatol 2025; 24:e70105. [PMID: 40071444 PMCID: PMC11897930 DOI: 10.1111/jocd.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/25/2025] [Indexed: 03/15/2025]
Abstract
OBJECTIVE Oxidative stress activates the reactive oxygen species (ROS) and excessive ROS can damage skin cells, initiating oxidative stress responses that contribute to inflammation, aging, and other skin issues. As a resident skin bacterium, Cutibacterium acnes (C. acnes) plays an important role in maintaining skin homeostasis and provides antioxidant benefits. However, the metabolite components and mechanisms of C. acnes exerting antioxidant activity are not yet clear. This study aimed to analyze the potential antioxidant effects of C. acnes cell-free supernatant and the mechanisms. METHODS The antioxidant effects were evaluated by measuring the scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid ammonium salt) (ABTS) radicals, and hydroxyl radicals, as well as the effects on ROS levels in menadione-induced primary human keratinocytes in vitro. Additionally, western blot analysis was performed to assess the antioxidant effects of the C. acnes CCSM0331 cell-free supernatant (CFS). RESULTS C. acnes CCSM0331 was isolated from the facial skin of healthy individuals. This strain, classified as type II, is associated with healthy skin. The CFS of strain CCSM0331 contained various short-chain fatty acids (SCFAs), glutathione peroxidase (GSH-Px), and total superoxide dismutase(T-SOD), exhibiting strong DPPH and ABTS radical scavenging capabilities, thus demonstrating substantial antioxidant activity. In a reactive oxygen species model induced by menadione in primary human keratinocytes, the addition of 5% of the fermentation supernatant from this strain significantly reduced ROS levels, indicating a notable ROS-scavenging effect. Western blot analysis further confirmed that the CCSM0331 fermentation supernatant activated the expression of Nrf-2 and HO-1 proteins, thereby activating the Nrf-2 oxidative stress pathway and exerting antioxidant effects. CONCLUSION C. acnes CCSM0331 is a promising skin probiotic with notable antioxidant properties. The activity of this strain exhibited significant free radical scavenging activity, suggesting its potential application in the development of antiaging products. This study provides theoretical support for the screening of functional skin bacteria or skin probiotics.
Collapse
Affiliation(s)
- Li Shao
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiP. R. China
| | - Jieyan Huang
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiP. R. China
| | - Yan Li
- R&D Innovation CenterShandong Freda Biotech Co., Ltd.JinanShandongP. R. China
| | - Laiji Ma
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiP. R. China
| | - Yujie Niu
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiP. R. China
| | - Wen Jiang
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiP. R. China
| | - Chunying Yuan
- R&D Innovation CenterShandong Freda Biotech Co., Ltd.JinanShandongP. R. China
| | - Tianming Bai
- R&D Innovation CenterShandong Freda Biotech Co., Ltd.JinanShandongP. R. China
| | - Suzhen Yang
- R&D Innovation CenterShandong Freda Biotech Co., Ltd.JinanShandongP. R. China
| |
Collapse
|
3
|
Ma Z, Li Y, Zhao Z, Song Q, Wang Q, Lu S, Wang J. Novel anti-oxidative peptides from equine hemoplasma protein hydrolysates: Purification, identification and protective effects on Caco-2 cells. Food Res Int 2025; 204:115943. [PMID: 39986787 DOI: 10.1016/j.foodres.2025.115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
In this study, we purified and identified antioxidant peptides from equine plasma protein hydrolysates and assessed their protective effects against H2O2-induced oxidative stress in Caco-2 cells. Four antioxidant peptides were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in equine plasma protein hydrolysate, namely: GTMVGC (567.69 Da), FGMTST (662.88 Da), VGYHSHF (847.01 Da) and ALSPFFKE (939.18 Da). Among them, ALSPFFKE showed the strongest antidigestive properties after modelled digestion studies. Moreover, ALSPFFKE enhanced intracellular superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities while significantly reducing reactive oxygen species accumulation and malondialdehyde formation in Caco-2 cells. The molecular docking analysis suggested that ALSPFFKE achieves regulation of the Keap1-Nrf2 pathway mainly by forming multiple hydrogen bonds and hydrophobic interactions with key amino acids (Arg380, Ser555, Gln530, Tyr334) in Keap1. These findings suggested that equine plasma peptides hold significant promise for the development of novel, potent, and stable antioxidant functional foods.
Collapse
Affiliation(s)
- Zehao Ma
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yuhan Li
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Ziqiao Zhao
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - QianQian Song
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Qingling Wang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Shiling Lu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Jingyun Wang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
4
|
Zhang C, Luo Y, Deng Z, Du R, Han M, Wu J, Zhao W, Guo R, Hou Y, Wang S. Recent advances in cold plasma technology for enhancing the safety and quality of meat and meat products: A comprehensive review. Food Res Int 2025; 202:115701. [PMID: 39967157 DOI: 10.1016/j.foodres.2025.115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 02/20/2025]
Abstract
Meat and meat products constitute an important component of the diet for several populations around the world and fulfill various nutritional requirements of the human body. However, owing to the inherent characteristics of meat - including its susceptibility to oxidation and contamination with foodborne pathogens - meat and meat products perish easily. In recent years, with improvements in living standards and increased focus on nutrition and health among consumers, non-thermal food processing technologies have received increasing attention. Among these strategies, cold plasma (CP) technology has emerged as a promising and novel processing technique with substantial potential in preserving meat and meat products. In this review, we discussed and analyzed the effects of CP on the nutritional value, sensory quality, and safety of meat and meat products, particularly, the potential toxicological hazards. Furthermore, we provided a detailed introduction to the mechanisms about how CP affects microorganisms, highlighting its role in inducing apoptosis and inhibiting quorum sensing. In the base of these theoretical foundations, this paper proposed several practical recommendations in order to optimize CP technology. Finally, we summarized the potential applications of CP in meat preservation, aiming to establish a theoretical framework for further research and application of this technology.
Collapse
Affiliation(s)
- Changyan Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Yulong Luo
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China.
| | - Ziyao Deng
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Rui Du
- Yinchuan Agricultural Product Quality Testing Center, Yinchuan Agriculture and Rural Bureau, Yinchuan 750021 PR China
| | - Mei Han
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Junqin Wu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Wenxiu Zhao
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Rong Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Yanru Hou
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Songlei Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| |
Collapse
|
5
|
Wang J, Zhao R, Liu Y, Hu T, Li X, He L, Guo Z, Chen C, Shi X. The correlation between Smac, IAPs and mitochondrial apoptosis, muscle tenderness during postmortem aging of Oula Tibetan sheep meat. Food Chem X 2024; 24:101887. [PMID: 39498258 PMCID: PMC11532436 DOI: 10.1016/j.fochx.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Oula Tibetan sheep meat has rich nutritional value but relatively poor tenderness. Recently, apoptosis of muscle cells has gradually become a research hotspot for improving meat tenderness during postmortem aging. Smac can promote the decrease of IAPs expression in tumor cells, thereby inducing mitochondrial apoptosis. However, the relationship between Smac, IAPs and mitochondrial apoptosis, muscle tenderness during postmortem meat aging is still unclear. Thus, the aim of this work was to explore the relationship between Smac, IAPs and mitochondrial apoptosis as well as muscle tenderness during postmortem meat aging. Smac concentration, IAPs concentration, pH value, ATP content, SDH activity, MPTP opening degree, MMP, caspase-3/9 activity, apoptotic rate, MFI and shear force value of Oula Tibetan sheep meat were measured at different aging times and correlation analysis was performed. Correlation analysis revealed that Smac, IAPs were markedly related to mitochondrial apoptosis and muscle tenderness during postmortem aging of Tibetan sheep meat. The results suggest that Smac may regulate IAPs to promote mitochondrial apoptosis and muscle tenderization in Oula Tibetan sheep meat during postmortem aging.
Collapse
Affiliation(s)
- Jingyu Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ruina Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Tieying Hu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaolong Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Long He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaobin Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Cheng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xixiong Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Sheng X, Yan L, Peng L, Zhao L, Dai F, Chen F, Wang L, Chen Y, Ye M, Wang J, Zhang J, Raghavan V. Effect of plasma-activated lactic acid on microbiota composition and quality of puffer fish ( Takifugu obscurus) fillets during chilled storage. Food Chem X 2024; 21:101129. [PMID: 38298353 PMCID: PMC10828650 DOI: 10.1016/j.fochx.2024.101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Fresh puffer fish (Takifugu obscurus) are susceptible to microbial contamination and have a very short shelf-life of chilled storage. Hence, this study aimed to evaluate the effects of plasma-activated lactic acid (PALA) on microbiota composition and quality attributes of puffer fish fillets during chilled storage. The results showed that PALA treatment effectively reduced the growth of bacteria and attenuated changes in physicochemical indicators (total volatile basic nitrogen, pH value, K value, and biogenic amines) of puffer fish fillets. Additionally, insignificant changes were observed in lipid oxidation during the first 8 days (p > 0.05). Illumina-MiSeq high-throughput sequencing revealed that PALA effectively inhibited the growth of Pseudomonas in puffer fish fillets and maintained the diverse characteristics of the microbial community. In combination with sensory analysis, PALA extended the shelf life of puffer fish fillets for 4 days, suggesting that PALA could be considered a potential fish fillet preservation method.
Collapse
Affiliation(s)
- Xiaowei Sheng
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Longfei Yan
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lanqing Peng
- Guangdong Supply and Marketing Green Agricultural Products Production and Supply Base Operation Co., Ltd, Huizhou 516100, China
| | - Luling Zhao
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fanwei Dai
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Feiping Chen
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ling Wang
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yulong Chen
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mingqiang Ye
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jianhao Zhang
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| |
Collapse
|
7
|
Pius Bassey A, Pei Liu P, Chen J, Kabir Bako H, Frimpong Boateng E, Isaiah Ibeogu H, Ye K, Li C, Zhou G. Antibacterial efficacy of phenyllactic acid against Pseudomonas lundensis and Brochothrix thermosphacta and its synergistic application on modified atmosphere/air-packaged fresh pork loins. Food Chem 2024; 430:137002. [PMID: 37524609 DOI: 10.1016/j.foodchem.2023.137002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/24/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
Microbial contamination is a crucial problem that is difficult to solve for the meat industry. Therefore, this study explored the antibacterial efficacy of phenyllactic acid (PLA) against Pseudomonas lundensis (PL) and Brochothrix thermosphacta (BT) solely and in combination (PL + BT). It also provided insights into its synergistic preservation effect during inoculation in chilled (4 °C) fresh pork loins under air (AP) and modified atmosphere packaging (MAP). The minimum inhibitory concentration (MIC) of PLA was 10 mg/mL. Growth kinetics, scanning electron microscopy (SEM), zeta potential, and cell viability investigations showed that PLA treatment exhibited reduced bacterial growth, aided morphological alterations, and leakage in cell membrane integrity in vitro. Nonetheless, PLA and MAP (70 %N2/30 %CO2) showed an excellent synergistic antibacterial ability against spoilage indicators(total glucose, pH, TVB-N, and TBARS), bacterial counts than AP, without impairing organoleptic acceptability. These results demonstrate the broad antibacterial efficacy of PLA as a biopreservative for the meat industry.
Collapse
Affiliation(s)
- Anthony Pius Bassey
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Pei Pei Liu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Jiahui Chen
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Hadiza Kabir Bako
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Evans Frimpong Boateng
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Henry Isaiah Ibeogu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Keping Ye
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China.
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China.
| |
Collapse
|