1
|
Gnaim R, Ledesma-Amaro R. Synthetic biology of Fusarium for the sustainable production of valuable bioproducts. Biotechnol Adv 2025; 81:108579. [PMID: 40222460 DOI: 10.1016/j.biotechadv.2025.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Synthetic biology offers transformative opportunities to optimise Fusarium species as efficient platforms for the sustainable production of diverse bioproducts. Advanced engineering techniques, including CRISPR/Cas9, RNA interference and synthetic promoters, have enhanced the manipulation of metabolic pathways, enabling higher yields of industrially relevant compounds. Recent insights from next-generation sequencing and omics technologies have significantly expanded our understanding of Fusarium's metabolic networks, leading to more precise strain engineering. Despite these advances, challenges such as metabolic bottlenecks, regulatory complexities and strain stability remain significant barriers to industrial-scale applications. The development of efficient genetic tools, together with the expansion of our knowledge of Fusarium physiology and genetics thanks to systems biology approaches, holds promise to unlock Fusarium's full potential as a sustainable cell factory. This review focuses on the genetic and metabolic tools available to enhance Fusarium's capacity to produce biofuels, pharmaceuticals, enzymes and other valuable compounds. It also highlights key innovations and discusses future directions for leveraging Fusarium as an environmentally friendly bioproduction system.
Collapse
Affiliation(s)
- Rima Gnaim
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK; Bezos Centre for Sustainable Protein, Imperial College London, London, UK; Engineering Biology Mission Hub on Microbial Food, Imperial College London, London, UK
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK; Bezos Centre for Sustainable Protein, Imperial College London, London, UK; Engineering Biology Mission Hub on Microbial Food, Imperial College London, London, UK.
| |
Collapse
|
2
|
Liu Y, Nie R, Shen K, Diao X, Liu G. Multi-omics profiling reveals the molecular mechanism of Bifidobacterium animalis BB04 in co-culture with Wickerhamomyces anomalus Y-5 to induce bifidocin A synthesis. World J Microbiol Biotechnol 2024; 40:366. [PMID: 39455466 DOI: 10.1007/s11274-024-04172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Bacteriocin is a kind of natural substance that can effectively inhibit bacteria, but its production usually limited by environment. Co-culture is a strategy to stimulate bacteriocin production. Bifidocin A produced by Bifidobacterium animalis BB04, is a novel bacteriocin with a broad-spectrum antimicrobial active of foodborne bacteria. In order to enhance bifidocin A production, bacteriocin-inducing strains were screened firstly in co-cultivation. Then, the molecular mechanism of co-cultural induction was investigated by transcriptomic and proteomic analysis. Finally, the key inducing metabolites were identified by using targeted metabolomic technology. The results showed that Wickerhamomyces anomalus Y-5 in co-cultivation could significantly enhance bifidocin A production, with a 3.00-fold increase compared to mono-culture. The induction may not depend on direct contact with cells and may instead be attributed to be continuous exposure to inducing substances at specific concentration. In co-cultivation, W. anomalus Y-5 up-regulated Hxk2 and Tap42 to activate Glucose-cAMP and Tor and HOG-MAPK pathway, stimulated the expression of the retrograde gene, produced glutamine and glycerol to maintain activity. During this process, glutamine, inosine, guanosine, adenine, uracil, fumaric acid and pyruvic acid produced by W. anomalus Y-5 could induce the synthesis of bifidocin A. In conclusion, W. anomalus Y-5 in co-cultivation induced the synthesis of bifidocin A by regulating various signaling pathways to produce inducing substances. These findings establish a foundation for high-efficient synthesis of bifidocin A and provide a new perspective into the industrial production of bacteriocin.
Collapse
Affiliation(s)
- Yangshuo Liu
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Rong Nie
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Kaisheng Shen
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Xinjie Diao
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Guorong Liu
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China.
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
3
|
Liu Y, Aimutis WR, Drake M. Dairy, Plant, and Novel Proteins: Scientific and Technological Aspects. Foods 2024; 13:1010. [PMID: 38611316 PMCID: PMC11011482 DOI: 10.3390/foods13071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Alternative proteins have gained popularity as consumers look for foods that are healthy, nutritious, and sustainable. Plant proteins, precision fermentation-derived proteins, cell-cultured proteins, algal proteins, and mycoproteins are the major types of alternative proteins that have emerged in recent years. This review addresses the major alternative-protein categories and reviews their definitions, current market statuses, production methods, and regulations in different countries, safety assessments, nutrition statuses, functionalities and applications, and, finally, sensory properties and consumer perception. Knowledge relative to traditional dairy proteins is also addressed. Opportunities and challenges associated with these proteins are also discussed. Future research directions are proposed to better understand these technologies and to develop consumer-acceptable final products.
Collapse
Affiliation(s)
- Yaozheng Liu
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| | - William R. Aimutis
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
- North Carolina Food Innovation Lab, North Carolina State University, Kannapolis, NC 28081, USA
| | - MaryAnne Drake
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| |
Collapse
|
4
|
Wang H, Yao L, Chen J, Ding Z, Ou X, Zhang C, Zhao J, Han Y. Antifungal Peptide P852 Effectively Controls Fusarium oxysporum, a Wilt-Causing Fungus, by Affecting the Glucose Metabolism and Amino Acid Metabolism as well as Damaging Mitochondrial Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19638-19651. [PMID: 38015891 DOI: 10.1021/acs.jafc.3c07953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Fusarium oxysporum causes wilt disease, which causes huge economic losses to a wide range of agricultural cash crops. Antifungal peptide P852 is an effective biocide. However, the mechanism of direct inhibition of pathogenic fungus needs to be explored. The proteomics and transcriptomics results showed that P852 mainly affected intracellular pathways such as glucose metabolism, amino acid metabolism, and oxidoreductase activity in F. oxysporum. P852 disrupts the intracellular oxidative equilibrium in F. oxysporum, and transmission electron microscopy observed mitochondrial swelling, disruption of membrane structure, and leakage of contents. Decreased mitochondrial membrane potential, mitochondrial cytochrome c leakage, and reduced ATP production were also detected. These results suggest that P852 is able to simultaneously inhibit intracellular metabolism and disrupt the mitochondrial function of F. oxysporum, exerting its inhibitory effects in multiple pathways together. The present study provides some insights into the multitargeted mechanism of fungus inhibition of antifungal lipopeptide substances produced by Bacillus spp.
Collapse
Affiliation(s)
- Hongji Wang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Lan Yao
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Jie Chen
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Zeran Ding
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xuan Ou
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Chaowen Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Jianjun Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Yuzhu Han
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
- Immunology Research Center, Institute of Medicine, Southwest University, Chongqing 402460, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 402460, China
| |
Collapse
|