1
|
Logue CM, De Cesare A, Tast-Lahti E, Chemaly M, Payen C, LeJeune J, Zhou K. Salmonella spp. in poultry production-A review of the role of interventions along the production continuum. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:289-341. [PMID: 38461002 DOI: 10.1016/bs.afnr.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Salmonella is a significant pathogen of human and animal health and poultry are one of the most common sources linked with foodborne illness worldwide. Global production of poultry meat and products has increased significantly over the last decade or more as a result of consumer demand and the changing demographics of the world's population, where poultry meat forms a greater part of the diet. In addition, the relatively fast growth rate of birds which is significantly higher than other meat species also plays a role in how poultry production has intensified. In an effort to meet the greater demand for poultry meat and products, modern poultry production and processing practices have changed and practices to target control and reduction of foodborne pathogens such as Salmonella have been implemented. These strategies are implemented along the continuum from parent and grandparent flocks to breeders, the farm and finished broilers to transport and processing and finally from retail to the consumer. This review focuses on common practices, interventions and strategies that have potential impact for the control of Salmonella along the poultry production continuum from farm to plate.
Collapse
Affiliation(s)
- Catherine M Logue
- Department of Population Health, College of Veterinary Medicine, University of Georgia, United States.
| | | | - Elina Tast-Lahti
- European Center for Disease Prevention and Control (ECDC), Sweden
| | - Marianne Chemaly
- Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, France
| | - Cyrielle Payen
- Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, France
| | - Jeff LeJeune
- Food System and Food Safety, Food and Agricultural Organization of the United Nations, Italy
| | - Kang Zhou
- Food System and Food Safety, Food and Agricultural Organization of the United Nations, Italy
| |
Collapse
|
2
|
Huang H, He J, Gao X, Lei J, Zhang Y, Wang Y, Liu X, Hao J. Mechanism of acid and alkali electrolyzed water on the elimination of Listeria monocytogenes biofilm based on proteomic analysis. J Proteomics 2023; 286:104952. [PMID: 37390895 DOI: 10.1016/j.jprot.2023.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 07/02/2023]
Abstract
Acidic electrolyzed water is a relatively mature bactericide, which has a certain inhibitory effect on a variety of microorganisms, and is widely used in the field of food processing for cleaning, sterilization and disinfection. This study investigated the deactivation mechanisms of Listeria monocytogenes by Tandem Mass Tags quantitative proteomics analysis. Samples were treated through A1S4 (Alkaline electrolytic water treatment for 1 min and Acid electrolytic water treatment for 4 min), S3A1S1 (Acid electrolyzed water treatment 3 min, Alkaline electrolyzed water treatment 1 min and Acid electrolyzed water treatment 1 min), S5 (Acid electrolytic water treatment for 5 min). Proteomic analysis showed that the mechanism of acid alkaline electrolyzed water treatment to eliminate the inactivation of the biofilm of L. monocytogenes was related to protein transcription and extension, RNA processing and synthesis, gene regulation, sugar and amino acid transport and metabolism, signal transduction and ATP binding. The study on the influence mechanism and action mechanism of the combination of acidic and alkaline electrolyzed water to remove L. monocytogenes biofilm is helpful to understand the development of the process of removing biofilm by electrolyzed water, and provides theoretical support for the treatment of other microbial contamination problems in food processing by electrolyzed water.
Collapse
Affiliation(s)
- Hanbing Huang
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China
| | - Jialin He
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China
| | - Xiangyu Gao
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China
| | - Jun Lei
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China
| | - Yuxi Zhang
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China
| | - Yan Wang
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China
| | - Xueqiang Liu
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China.
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China.
| |
Collapse
|