1
|
Zhang Y, Zhang D, Cai W, Tang F, Zhang Q, Zhao X, Huang R, Shan C. Effect of mixed fermentation of compound grapes on organic acids and volatiles in mulberry wine. Food Sci Biotechnol 2025; 34:1957-1968. [PMID: 40196343 PMCID: PMC11972271 DOI: 10.1007/s10068-025-01821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/01/2024] [Accepted: 01/02/2025] [Indexed: 04/09/2025] Open
Abstract
The main objective of this study was to investigate the effect of mixed fermentation of blended grapes on the organic acid and volatile content of mulberry fruit wines before and after fermentation. Rose-scented grapes and blackberry grapes were chosen to produce fruit wines through mixed fermentation with mulberries, respectively. HPLC was employed for the content of organic acids, whereas the concentrations of volatile compounds in the mulberry wines were determined using HS-SPME-GC-MS. The results showed that yeast fermentation could effectively reduce the content of malic acid and citric acid while generating rich aroma substances. During compound grape blend fermentation, the organic acid content decreases, and more volatile compounds are produced. Among them, mulberry rosé grapefruit wine exhibits a more complex array of volatile compounds, including phenylethanol, ethyl caprylate, and ethyl caprate, alongside recently discovered compounds like isobutanol, (+)-3-methyl-2-butanol, and α-pinitol. These compounds contribute to the enhanced flavor of mulberry wine.
Collapse
Affiliation(s)
- Yao Zhang
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Dongsheng Zhang
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Office of the Party Committee of Xinjiang Production and Construction Corps, Urumqi, 830000 Xinjiang China
| | - Wenchao Cai
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Fengxian Tang
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Qin Zhang
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Xinxin Zhao
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Ruijie Huang
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Chunhui Shan
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
| |
Collapse
|
2
|
Gao X, Kan X, Du F, Sun L, Li X, Liu J, Liu X, Yao D. The Manufacturing Process of Lotus ( Nelumbo Nucifera) Leaf Black Tea and Its Microbial Diversity Analysis. Foods 2025; 14:519. [PMID: 39942112 PMCID: PMC11817234 DOI: 10.3390/foods14030519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Lotus leaves combine both edible and medicinal properties and are rich in nutrients and bioactive compounds. In this study, the lotus leaf tea was prepared using a black tea fermentation process, and the functional components and microbial changes during fermentation were investigated. The results indicated that the activity of polyphenol oxidase showed an initial rise followed by a decline as fermentation progressed, peaked at 3 h with 1.07 enzyme activity units during fermentation. The lotus leaf fermented tea has high levels of soluble sugars (20.92 ± 0.53 mg/g), total flavonoids (1.59 ± 0.05 mg GAE/g), and total polyphenols (41.34 ± 0.87 mg RE/g). Its antioxidant activity was evaluated using ABTS, DPPH, and hydroxyl radical scavenging assays, with results of 18.90 ± 1.02 mg Vc/g, 47.62 ± 0.51 mg Vc/g, and 17.58 ± 1.06 mg Vc/g, respectively. The microbial community also shifted during fermentation. Fusarium played a significant role during the fermentation process. This study demonstrated that the black tea fermentation process improved the functional components and biological activity of lotus leaf tea by optimizing the synergistic effect of enzymatic oxidation and microbial fermentation. The findings not only realized the comprehensive utilization of lotus leaf resources but also provided a foundation for developing innovative functional beverages with enhanced bioactive properties.
Collapse
Affiliation(s)
- Xiaojing Gao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| | - Xuhui Kan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| | - Fengfeng Du
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| | - Linhe Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| | - Xixi Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| | - Jixiang Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| | - Xiaojing Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| | - Dongrui Yao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| |
Collapse
|
3
|
Aihaiti A, Zhao L, Maimaitiyiming R, Wang L, Liu R, Mu Y, Chen K, Wang Y. Changes in volatile flavors during the fermentation of tomato (Solanum lycopersicum L.) juice and its storage stabilization. Food Chem 2025; 463:141077. [PMID: 39243620 DOI: 10.1016/j.foodchem.2024.141077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/16/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Flavor is a crucial indicators of the quality of fermented tomato juice; however, there has been limited research in this area. Herein, headspace solid-phase microextraction gas chromatography-mass spectrometry was used to analyze the volatile metabolites at different stages during FTJ fermentation. 131 volatile organic compounds (VOCs) were identified, with alcohols, acids, and esters as the main compounds. The content of superoxide dismutase (SOD) and lycopene (LYC) had a positive correlation with methyl salicylate, ethyl acetate, and linalyl acetate. Subsequently, the storage stability of FTJ was evaluated at temperatures of 4 °C, 25 °C, and 37 °C over a period of 45 d, revealing that the quality of FTJ decreased with increasing storage temperature. The shelf life of FTJ under different storage conditions was determined using SOD activity and LYC content as quality indicators. The final shelf life was 47 d at 37 °C, 69 d at 25 °C, and 123 d at 4 °C.
Collapse
Affiliation(s)
| | - Lei Zhao
- School of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | | | - Liang Wang
- School of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Ruoqing Liu
- School of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Ying Mu
- School of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Keping Chen
- Xinjiang Huize Food Limited Liability Company, Urumqi 830000, China
| | - Yu Wang
- School of Life Science and Technology, Xinjiang University, Urumqi 830000, China.
| |
Collapse
|
4
|
Bai C, Fan B, Hao J, Yao Y, Ran S, Wang H, Li H, Wei R. Changes in Microbial Community Diversity and the Formation Mechanism of Flavor Metabolites in Industrial-Scale Spontaneous Fermentation of Cabernet Sauvignon Wines. Foods 2025; 14:235. [PMID: 39856901 PMCID: PMC11764576 DOI: 10.3390/foods14020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The key flavor compound formation pathways resulting from indigenous microorganisms during the spontaneous fermentation of wine have not been thoroughly described. In this study, high-throughput metagenomic sequencing and untargeted metabolomics were utilized to investigate the evolution of microbial and metabolite profiles during spontaneous fermentation in industrial-scale wine production and to elucidate the formation mechanisms of key flavor compounds. Metabolome analysis showed that the total amount of esters, fatty acids, organic acids, aldehydes, terpenes, flavonoids, and non-flavonoids increased gradually during fermentation. Enrichment analysis indicated that metabolic pathways related to the synthesis, decomposition, transformation, and utilization of sugars, amino acids, and fatty acids were involved in the formation of key flavor compounds in wine. Metagenomic analysis revealed that Saccharomyces, Hanseniaspora, Zygosaccharomyces, Wickerhamiella, Lactobacillus, and Fructobacillus were the dominant taxa during spontaneous fermentation. They were significantly positively correlated with organic acids, fatty acids, esters, phenols, aldehydes, terpenes, and phenols. In conclusion, this research provides new insights into the metabolic pathways of key flavor compounds formed by indigenous microorganisms during wine fermentation.
Collapse
Affiliation(s)
- Chunyan Bai
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu District, Jinzhong 030801, China; (C.B.); (B.F.); (J.H.); (Y.Y.); (S.R.)
- Beijing Hongxing Liuquxiang Co., Ltd., Liuquxiang Branch Company, Industrial Zone, Qixian, Jinzhong 030900, China
| | - Boyuan Fan
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu District, Jinzhong 030801, China; (C.B.); (B.F.); (J.H.); (Y.Y.); (S.R.)
| | - Jinmei Hao
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu District, Jinzhong 030801, China; (C.B.); (B.F.); (J.H.); (Y.Y.); (S.R.)
| | - Yuan Yao
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu District, Jinzhong 030801, China; (C.B.); (B.F.); (J.H.); (Y.Y.); (S.R.)
| | - Shiming Ran
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu District, Jinzhong 030801, China; (C.B.); (B.F.); (J.H.); (Y.Y.); (S.R.)
- Xinjiang Deyun Xingtai Agriculture Co., Ltd., No. 32, Dingxin Road, Fuhai, Altay 836400, China
| | - Hua Wang
- College of Enology, Northwest A&F University, No. 22, Xinong Road, Yangling, Xianyang 712100, China; (H.W.); (H.L.)
| | - Hua Li
- College of Enology, Northwest A&F University, No. 22, Xinong Road, Yangling, Xianyang 712100, China; (H.W.); (H.L.)
| | - Ruteng Wei
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu District, Jinzhong 030801, China; (C.B.); (B.F.); (J.H.); (Y.Y.); (S.R.)
| |
Collapse
|
5
|
Xu H, Wang Z, Qin Z, Zhang M, Qin Y. Evaluating of effects for the sequence fermentation with M. pulcherrima and I. terricola on mulberry wine fermentation: Physicochemical, flavonoids, and volatiles profiles. Food Chem X 2024; 24:101869. [PMID: 39974707 PMCID: PMC11838122 DOI: 10.1016/j.fochx.2024.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 02/21/2025] Open
Abstract
This study investigates the variation of physicochemical, flavonoids, and volatiles during sequential fermentation which Metschnikowia pulcherrima and Issatchenkia terricola as sequential co-fermenters and a single fermentation by Saccharomyces cerevisiae in mulberry wine. Sequential fermentation shown that β-glucosidase activity greater and fermentation time declined to 144 h. In addition, 11 flavonoids (apigenin-5-O-glucoside, aromadendrin-7-O-glucoside, kaempferol-3,7-O-diglucoside, and so on) were significantly increased. Significant differences were found between types of metabolic products enriched in flavone and flavonol biosynthesis and anthocyanins biosynthesis, with an enrichment ratio of 46.15 % and 23.08 %, respectively. 16 apple-scented compounds (2-Buten-1-one, (E)-1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-, Butanoic acid, (Z)-3-hexenyl ester, 3-methyl-1-methylethyl-Butanoic acid ester, and so on), 5 rose-scented (e.g. benzyl alcohol, ethyl geranate, hydrocinnamic acid), and 4 balsamic-scented compounds ((-)-myrtenol, benzoic acid 1-methylethyl ester, benzyl alcohol, p-cymen-7-ol) were distinctively present. Interestingly, tryptophan metabolism and indole alkaloid biosynthesis are only enriched in sequential fermentation.
Collapse
Affiliation(s)
| | | | - Zhenyang Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Yanan Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
6
|
Yaqoob S, Imtiaz A, Khalifa I, Maqsood S, Ullah R, Shahat AA, Al-Asmari F, Murtaza MS, Qian JY, Ma Y. Multi-frequency sono-fermentation with mono and co-cultures of LAB synergistically enhance mulberry juice: Evidence from metabolic, micromorphological, sensorial, and computational approaches. ULTRASONICS SONOCHEMISTRY 2024; 111:107117. [PMID: 39454510 PMCID: PMC11541811 DOI: 10.1016/j.ultsonch.2024.107117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
The effect of multi-frequency ultrasound-assisted (20/28/40 KHz) lactic acid bacteria (LAB- Lacticaseibacillus casei, Lactiplantibacillus plantarum, Lacticaseibacillus paracasei, Lactobacillus acidophilus, and Lactobacillus helveticus) fermentation (mono and co-cultures) on the metabolic, structural, micromorphological, and sensorial properties of mulberry juice were evaluated. Results indicated that multi-frequency ultrasound-assisted fermentation significantly modified the microstructure of mulberry juice powder, resulting in more porous and rougher surfaces with irregular indentations. Total phenolic content in the best-performing sample (S10) increased to 365.36 mg GAE/mL, while total flavonoid content rose to 139.20 mg RE/mL (p < 0.05). Antioxidant activity, as measured by DPPH and FRAP assays, also showed considerable improvement, with DPPH scavenging activity increasing to 87.45 % and FRAP-value to 3.27 mM TE/mL (p < 0.05). Additionally, HPLC-UV analysis revealed that the amendment in the concentrations of cyanidin-3-rutinoside (47.47 mg/L) and peonidin-3-O-glucoside (66.86 mg/L) in the S2-based sample. E-nose analysis demonstrated intense flavor profiles in fermented samples, particularly in sample S15. Sensory evaluation also highlighted that the fruity and floral aromas in co-culture fermented samples were enhanced, notably in S10, S7, and S14. Thus, combining multifrequency ultrasonication and fermentation significantly enhances the antioxidants capacity, flavor profile, micro-morphology, and overall quality of mulberry juice.
Collapse
Affiliation(s)
- Sanabil Yaqoob
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Aysha Imtiaz
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Ibrahim Khalifa
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt; Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdelaaty A Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agriculture and Food Sciences, King Saud University, Saudi Arabia
| | - Mian Shamas Murtaza
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China.
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
7
|
Lian W, Lei J, Han C, Wu J, Liu Z, Liu W, Jiapaer A, Su H, Xu Y, Chen Y, Liu F. Effect of Different Yeasts on the Higher Alcohol Content of Mulberry Wine. Foods 2024; 13:1788. [PMID: 38928730 PMCID: PMC11203288 DOI: 10.3390/foods13121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Healthy, nutritious, and delicious mulberry wine is loved by everyone, but there is no specific yeast for mulberry wine. To screen for yeasts with low-yield higher alcohols for the fermentation of mulberry wine, we tested five commonly used commercial yeasts available on the market to ferment mulberry wine. All five yeasts were able to meet the requirements in terms of yeast fermentation capacity, speed, and physical and chemical markers of mulberry wine. The national standards were met by the fermentation requirements and the fermented mulberry wine. We identified yeast DV10 as a yeast with low-yield higher alcohols suitable for mulberry wine fermentation. The total higher alcohol content in fermented mulberry wine was 298 mg/L, which was 41.9% lower than that of fermented mulberry wine with yeast EC118. The contents of 17 free amino acids and five sugars in mulberry juice and five yeast-fermented mulberry wines were tested. The results showed that the higher the amino acid and sugar content in yeast-fermented mulberry wine, the higher the content of higher alcohols produced by fermentation. A correlation analysis performed on each higher alcohol produced when yeast DV10 fermented the mulberry wine indicated decreased sugar and related amino acids. The findings demonstrated a substantial negative correlation among the levels of increased alcohol, decreased sugar, and matching amino acid content. Considering the correlation values among increased alcohol, decreased sugar, and related amino acids, the very slight difference suggests that both sugar anabolism and amino acid catabolism pathways have an equivalent impact on the synthesis of higher alcohols during the fermentation of mulberry wine. These results provide a theoretical basis for reducing the content of higher alcohols in mulberry wines, given the history and foundation for producing mulberry wine.
Collapse
Affiliation(s)
- Weijia Lian
- Turpan Institute of Agricultural Science, Xinjiang Academy of Agricultural Science, Turpan 838000, China; (W.L.); (J.L.); (C.H.); (J.W.); (Z.L.); (W.L.); (A.J.); (H.S.); (Y.X.)
| | - Jing Lei
- Turpan Institute of Agricultural Science, Xinjiang Academy of Agricultural Science, Turpan 838000, China; (W.L.); (J.L.); (C.H.); (J.W.); (Z.L.); (W.L.); (A.J.); (H.S.); (Y.X.)
| | - Chen Han
- Turpan Institute of Agricultural Science, Xinjiang Academy of Agricultural Science, Turpan 838000, China; (W.L.); (J.L.); (C.H.); (J.W.); (Z.L.); (W.L.); (A.J.); (H.S.); (Y.X.)
| | - Jiuyun Wu
- Turpan Institute of Agricultural Science, Xinjiang Academy of Agricultural Science, Turpan 838000, China; (W.L.); (J.L.); (C.H.); (J.W.); (Z.L.); (W.L.); (A.J.); (H.S.); (Y.X.)
| | - Zhigang Liu
- Turpan Institute of Agricultural Science, Xinjiang Academy of Agricultural Science, Turpan 838000, China; (W.L.); (J.L.); (C.H.); (J.W.); (Z.L.); (W.L.); (A.J.); (H.S.); (Y.X.)
| | - Wei Liu
- Turpan Institute of Agricultural Science, Xinjiang Academy of Agricultural Science, Turpan 838000, China; (W.L.); (J.L.); (C.H.); (J.W.); (Z.L.); (W.L.); (A.J.); (H.S.); (Y.X.)
| | - Ayijiamali Jiapaer
- Turpan Institute of Agricultural Science, Xinjiang Academy of Agricultural Science, Turpan 838000, China; (W.L.); (J.L.); (C.H.); (J.W.); (Z.L.); (W.L.); (A.J.); (H.S.); (Y.X.)
| | - Hanming Su
- Turpan Institute of Agricultural Science, Xinjiang Academy of Agricultural Science, Turpan 838000, China; (W.L.); (J.L.); (C.H.); (J.W.); (Z.L.); (W.L.); (A.J.); (H.S.); (Y.X.)
| | - Yanjun Xu
- Turpan Institute of Agricultural Science, Xinjiang Academy of Agricultural Science, Turpan 838000, China; (W.L.); (J.L.); (C.H.); (J.W.); (Z.L.); (W.L.); (A.J.); (H.S.); (Y.X.)
| | - Ya Chen
- Turpan Institute of Agricultural Science, Xinjiang Academy of Agricultural Science, Turpan 838000, China; (W.L.); (J.L.); (C.H.); (J.W.); (Z.L.); (W.L.); (A.J.); (H.S.); (Y.X.)
| | - Fengjuan Liu
- Institute of Quality Standards & Testing Technology for Agri-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| |
Collapse
|
8
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
9
|
Qin Y, Xu H, Sun J, Cheng X, Lei J, Lian W, Han C, Huang W, Zhang M, Chen Y. Succession of microbiota and its influence on the dynamics of volatile compounds in the semi-artificial inoculation fermentation of mulberry wine. Food Chem X 2024; 21:101223. [PMID: 38384682 PMCID: PMC10878857 DOI: 10.1016/j.fochx.2024.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
To improve the delightful flavor of mulberry wine through semi-artificial inoculation fermentation with Saccharomyces cerevisiae, we studied the dynamics change of microbiota, along with the physicochemical properties and metabolite profiles and their interaction relationship during the fermentation process. The abundance of lactic acid bacteria (Weissella, Lactobacillus, Fructobacillus, and Pediococcus) increased significantly during fermentation, while yeasts gradually established dominance. The inter-kingdom network of the dominant genera analysis further identified the following as core microbiota: Alternaria, Botrytis, Kazachstania, Acremonium, Mycosphaerella, Pediococcus, Gardnerella, and Schizothecium. Additionally, pH, alcohol, and total acid were significantly affected by microbiota variation. Fourteen of all identified volatile compounds with key different aromas were screened using PCA, OPLS-DA, and rOAV. The network of interconnected core microbiota with key different aromas revealed that Kazachstania and Pediococcus had stronger correlations with 1-butanol, 3-methyl-, propanoic acid, and 2-methyl-ethyl ester.
Collapse
Affiliation(s)
- Yanan Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Haotian Xu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Jinshuai Sun
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - XiangYang Cheng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Jing Lei
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, China
| | - Weijia Lian
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, China
| | - Chen Han
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, China
| | - Wanting Huang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Ya Chen
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, China
| |
Collapse
|