1
|
Tenea GN, Reyes P, Flores C. Crosslinking bacterial postbiotics for microbial and quality control of strawberries postharvest: bacteriological and 16S amplicon metagenome evidence. Front Microbiol 2025; 16:1570312. [PMID: 40177475 PMCID: PMC11961906 DOI: 10.3389/fmicb.2025.1570312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Strawberries are renowned for their exceptional flavor and nutritional properties but have a short shelf life due to rapid ripening and a high vulnerability to postharvest microbial decay. Postbiotic formulations (PBFs) derived from lactic acid bacteria (LAB) can be developed into effective preservation products, extending postharvest shelf life while maintaining fruit quality. Methods This study aimed to assess the effects of postbiotic-based formulations (PBFs) consisting of two key components: (1) a precipitated peptide-protein extract (PP) from Weissella cibaria UTNGt21O, serving as the antimicrobial agent, and (2) an exopolysaccharide (EPS) from W. confusa UTNCys2-2, functioning as the biopolymer carrier. These formulations were tested against a multidrug-resistant Serratia liquefaciens P4StpC1 strain, isolated from ready-to-eat strawberries, and their potential mode of action was analyzed in vitro. Time-kill assays and electron microscopy were used to evaluate their impact on the target cells. Furthermore, the performance of PBFs was compared to a commercial disinfectant (C1) in terms of their effects on strawberry microbiota and fruit quality, employing bacteriological techniques and 16S amplicon metagenomic analysis. Results The selected PBFs showed bacteriolytic effect on Serratia in vitro. The target cell viability was significantly reduced upon 1 h co-cultivation by inducing several morphological and ultrastructural modifications. Dipping strawberries at the ripe stage four in PBFs indicated no increase in total cell counts, thus the microorganisms colonization was retained during storage with refrigeration. The 16S metagenome analysis showed that the treatment impacted the fruit microbiota, significantly increasing Lactobacillus abundance (p < 0.001) by day eight compared to the disinfectant control. This suggests the formulation supports beneficial microbes, enhancing antimicrobial effects. Additionally, the postbiotic coating improved shelf-life, preserved fruit quality, and delayed deterioration in strawberries. The strawberries quality attributes were not affected by the treatment. Principal Component Analysis (PCA) revealed clear sample separation based on maturity stage, independent of the treatment. Conclusion The results highlight the potential of crosslinking of a peptide-protein fraction with EPS to prevent the colonization of undesirable microorganisms on postharvest strawberries while enhancing their safety and quality.
Collapse
Affiliation(s)
- Gabriela N. Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Ibarra, Ecuador
| | | | | |
Collapse
|
2
|
Andrew M, Jayaraman G. Production optimization and antioxidant potential of exopolysaccharide produced by a moderately halophilic bacterium Virgibacillus dokdonensis VITP14. Prep Biochem Biotechnol 2025; 55:112-130. [PMID: 38963714 DOI: 10.1080/10826068.2024.2370879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
This study aimed to enhance the extracellular polymeric substances (EPS) production of Virgibacillus dokdonensis VITP14 and explore its antioxidant potential. EPS and biomass production by VITP14 strain were studied under different culture parameters and media compositions using one factor at a time method. Among different nutrient sources, glucose and peptone were identified as suitable carbon and nitrogen sources. Furthermore, the maximum EPS production was observed at 5% of inoculum size, 5 g/L of NaCl, and 96 h of fermentation. Response surface methodology was employed to augment EPS production and investigate the optimal levels of nutrient sources with their interaction. The strain was observed to produce actual maximum EPS of about 26.4 g/L for finalized optimum medium containing glucose 20 g/L, peptone 10 g/L, and NaCl 50 g/L while the predicted maximum EPS was 26.5 g/L. There was a nine fold increase in EPS production after optimization study. Additionally, EPS has exhibited significant scavenging, reducing, and chelating potential (>85%) at their higher concentration. This study imparts valuable insights into optimizing moderately halophilic bacterial EPS production and evaluating its natural antioxidant properties. According to findings, V. dokdonensis VITP14 was a promising isolate that will provide significant benefits to biopolymer producing industries.
Collapse
Affiliation(s)
- Monic Andrew
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gurunathan Jayaraman
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
López-Almada G, Mejía-León ME, Salazar-López NJ. Probiotic, Postbiotic, and Paraprobiotic Effects of Lactobacillus rhamnosus as a Modulator of Obesity-Associated Factors. Foods 2024; 13:3529. [PMID: 39593945 PMCID: PMC11592899 DOI: 10.3390/foods13223529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a pandemic currently affecting the world's population that decreases the quality of life and promotes the development of chronic non-communicable diseases. Lactobacillus rhamnosus is recognized for multiple positive effects on obesity and overall health. In fact, such effects may occur even when the microorganisms do not remain alive (paraprobiotic effects). This raises the need to elucidate the mechanisms by which obesity-associated factors can be modulated. This narrative review explores recent findings on the effects of L. rhamnosus, particularly, its postbiotic and paraprobiotic effects, on the modulation of adiposity, weight gain, oxidative stress, inflammation, adipokines, satiety, and maintenance of intestinal integrity, with the aim of providing a better understanding of its mechanisms of action in order to contribute to streamlining its clinical and therapeutic applications. The literature shows that L. rhamnosus can modulate obesity-associated factors when analyzed in vitro and in vivo. Moreover, its postbiotic and paraprobiotic effects may be comparable to the more studied probiotic actions. Some mechanisms involve regulation of gene expression, intracellular signaling, and enteroendocrine communication, among others. We conclude that the evidence is promising, although there are still multiple knowledge gaps that require further study in order to fully utilize L. rhamnosus to improve human health.
Collapse
Affiliation(s)
| | | | - Norma Julieta Salazar-López
- Facultad de Medicina de Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés, Centro Cívico, Mexicali 21000, BCN, Mexico
| |
Collapse
|
4
|
Tan X, Ma B, Wang X, Cui F, Li X, Li J. Characterization of Exopolysaccharides from Lactiplantibacillus plantarum PC715 and Their Antibiofilm Activity Against Hafnia alvei. Microorganisms 2024; 12:2229. [PMID: 39597618 PMCID: PMC11596824 DOI: 10.3390/microorganisms12112229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Exopolysaccharides (EPSs) secreted by lactic acid bacteria have the potential to enhance human health by showing various biological functions. This study investigated the biological role and antibiofilm properties of EPS715, a new neutral EPS produced by pickled vegetables originating from Lactobacillus plantarum PC715. The results indicate that EPS715 is primarily composed of rhamnose, glucose, and mannose. Its molecular weight (Mw) is 47.87 kDa, containing an α-glucoside linkage and an α-pyranose ring. It showed an amorphous morphology without a triple helix structure. Furthermore, EPS715 showed improved antioxidant activity. Specifically, its scavenging capacity of ABTS+ radicals, DPPH radicals, and the hydroxyl (·OH) reduction capacity at 5 mg/mL was 98.64 ± 2.70%, 97.37 ± 0.79%, and 1.64 ± 0.05%, respectively. Its maximal scavenging capacity was >40%, and the hydroxyl (·OH) radical scavenging ability was dose-dependent. Moreover, the biofilm of various pathogens including S. aureus, B. cereus, S. saprophyticus, Acinetobacter spp., and H. alvei was substantially dispersed and affected by EPS715, with a maximum inhibition rate of 78.17% for H. alvei. The possible mechanism by which EPS715 shows antibiofilm properties against the H. alvei may be attributed to its effects on the auto-aggregation, hydrophilic characteristics, and motility of Hafnia spp. Thus, EPS715 has significant antioxidant and antibiofilm characteristics that may hold substantial potential for applications in food and medicinal products.
Collapse
Affiliation(s)
- Xiqian Tan
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- College of Food Science and Engineering & Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Bingyu Ma
- College of Food Science and Engineering & Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Xiaoqing Wang
- College of Food Science and Engineering & Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Fangchao Cui
- College of Food Science and Engineering & Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering & Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Jianrong Li
- College of Food Science and Engineering & Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| |
Collapse
|
5
|
Wang J, Zhou Y, Zhang J, Tong Y, Abbas Z, Zhao X, Li Z, Zhang H, Chen S, Si D, Zhang R, Wei X. Peptide TaY Attenuates Inflammatory Responses by Interacting with Myeloid Differentiation 2 and Inhibiting NF-κB Signaling Pathway. Molecules 2024; 29:4843. [PMID: 39459211 PMCID: PMC11509909 DOI: 10.3390/molecules29204843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
A balanced inflammatory response is crucial for the organism to defend against external infections, however, an exaggerated response may lead to detrimental effects, including tissue damage and even the onset of disease. Therefore, anti-inflammatory drugs are essential for the rational control of inflammation. In this study, we found that a previously screened peptide TaY (KEKKEVVEYGPSSYGYG) was able to inhibit the LPS-induced RAW264.7 inflammatory response by decreasing a series of proinflammatory cytokines, such as TNF-α, IL-6, and nitric oxide (NO). To elucidate the underlying mechanism, we conducted further investigations. Western blot analysis showed that TaY reduced the phosphorylation of key proteins (IKK-α/β, IκB-α,NF-κB (P65)) in the TLR4-NF-κB signaling pathway and inhibited the inflammatory response. Furthermore, molecular docking and molecular dynamic simulations suggested that TaY binds to the hydrophobic pocket of MD2 through hydrogen bonding and hydrophobic interactions, potentially competing with LPS for MD2 binding. Collectively, TaY is a promising candidate for the development of novel therapeutic strategies against inflammatory disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xubiao Wei
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Xie WY, Shen HL, Yan ZM, Zheng RJ, Jiang JJ, Zhong JJ, Zhou WW. Paenibacillus exopolysaccharide alleviates Malassezia-induced skin damage: Enhancing skin barrier function, regulating immune responses, and modulating microbiota. Int J Biol Macromol 2024; 278:135404. [PMID: 39256124 DOI: 10.1016/j.ijbiomac.2024.135404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Numerous studies have established a strong association between Malassezia and various skin disorders, including atopic dermatitis. Finding appropriate methods or medications to alleviate Malassezia-induced skin damage is of notable public interest. This study aimed to evaluate the therapeutic effect of the exopolysaccharide EPS1, produced by Paenibacillus polymyxa, on Malassezia restricta-induced skin damage. In vitro assays indicated that EPS1 reduced the expression of pro-inflammatory cytokine genes in TNF-α-induced HaCaT cells. In a murine model, EPS1 was found to mitigate clinical symptoms, reduce epidermal thickness and mast cell infiltration, improve skin barrier function, decrease pro-inflammatory cytokine levels associated with type 17 inflammation, enhance Tregs in the spleen, upregulate the transcription of Treg-related genes in skin lesions, and modulate the skin microbiota. This study is the first to report the alleviating effect of Paenibacillus exopolysaccharide on Malassezia-induced skin inflammation and its impact on the skin microbiota. These findings support the potential of Paenibacillus exopolysaccharides as consumer products and therapeutic agents for managing Malassezia-induced skin damage by improving skin barrier function, modulating immune responses, and influencing skin microbiota.
Collapse
Affiliation(s)
- Wan-Yue Xie
- Institute of Food Bioscience and Technology, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Hui-Ling Shen
- Institute of Food Bioscience and Technology, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zi-Ming Yan
- Institute of Food Bioscience and Technology, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ru-Jing Zheng
- Zhejiang Homay Technology Co., Ltd., Hangzhou 311200, Zhejiang, China
| | - Jin-Jie Jiang
- Zhejiang Homay Technology Co., Ltd., Hangzhou 311200, Zhejiang, China
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Wen Zhou
- Institute of Food Bioscience and Technology, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
7
|
Pavalakumar D, Undugoda LJS, Gunathunga CJ, Manage PM, Nugara RN, Kannangara S, Lankasena BNS, Patabendige CNK. Evaluating the Probiotic Profile, Antioxidant Properties, and Safety of Indigenous Lactobacillus spp. Inhabiting Fermented Green Tender Coconut Water. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10352-x. [PMID: 39300004 DOI: 10.1007/s12602-024-10352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
This study isolated and characterized four indigenous lactic acid bacterial strains from naturally fermented green tender coconut water: Lactiplantibacillus plantarum CWJ3, Lacticaseibacillus casei CWM15, Lacticaseibacillus paracasei CWKu14, and Lacticaseibacillus rhamnosus CWKu-12. Notably, among the isolates, Lact. plantarum CWJ3 showed exceptional acid tolerance, with the highest survival rate of 37.34% at pH 2.0 after 1 h, indicating its higher resistance against acidic gastric conditions. However, all strains exhibited robust resistance to bile salts, phenols, and NaCl, with survival rates exceeding 80% at given concentrations. Their optimal growth at 37 °C and survival at 20 °C and 45 °C underscored adaptability to diverse environmental conditions. Additionally, all strains showed sustainable survival rates in artificial saliva and simulated gastrointestinal juices, with Lact. plantarum CWJ3 exhibiting significantly higher survival rate (70.66%) in simulated gastric juice compared to other strains. Adherence properties were particularly noteworthy, especially in Lact. rhamnosus CWKu-12, which demonstrated the highest hydrophobicity, coaggregation with pathogens and autoaggregation, among the strains. The production of exopolysaccharides, particularly by Lact. plantarum CWJ3, enhanced their potential for gut colonization and biofilm formation. Various in vitro antioxidative assays using spectrophotometric methods revealed the significant activity of Lact. plantarum CWJ3, while antimicrobial testing highlighted its efficacy against selected foodborne pathogens. Safety assessments confirmed the absence of biogenic amine production, hemolytic, DNase, and gelatinase activities, as well as the ability to hydrolase the bile salt. Furthermore, these non-dairy probiotics exhibited characteristics comparable to dairy derived probiotics, demonstrating their potential suitability in developing novel probiotic-rich foods and functional products.
Collapse
Affiliation(s)
- Dayani Pavalakumar
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
- Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | | | - Chathuri Jayamalie Gunathunga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
- Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Pathmalal Marakkale Manage
- Centre for Water Quality and Algae Research, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Ruwani Nilushi Nugara
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | - Sagarika Kannangara
- Department of Plant and Molecular Biology, Faculty of Science, University of Kelaniya, Kelaniya, 11600, Sri Lanka
| | - Bentotage Nalaka Samantha Lankasena
- Department of Information and Communication Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | | |
Collapse
|
8
|
Upadhyaya C, Patel H, Patel I, Ahir P, Upadhyaya T. Development of Biological Coating from Novel Halophilic Exopolysaccharide Exerting Shelf-Life-Prolonging and Biocontrol Actions for Post-Harvest Applications. Molecules 2024; 29:695. [PMID: 38338439 PMCID: PMC10856335 DOI: 10.3390/molecules29030695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The literature presents the preserving effect of biological coatings developed from various microbial sources. However, the presented work exhibits its uniqueness in the utilization of halophilic exopolysaccharides as food coating material. Moreover, such extremophilic exopolysaccharides are more stable and economical production is possible. Consequently, the aim of the presented research was to develop a coating material from marine exopolysaccharide (EPS). The significant EPS producers having antagonistic attributes against selected phytopathogens were screened from different marine water and soil samples. TSIS01 isolate revealed the maximum antagonism well and EPS production was selected further and characterized as Bacillus tequilensis MS01 by 16S rRNA analysis. EPS production was optimized and deproteinized EPS was assessed for biophysical properties. High performance thin layer chromatography (HPTLC) analysis revealed that EPS was a heteropolymer of glucose, galactose, mannose, and glucuronic acid. Fourier transform infrared spectroscopy, X-ray diffraction, and UV-visible spectra validated the presence of determined sugars. It showed high stability at a wide range of temperatures, pH and incubation time, ≈1.63 × 106 Da molecular weight, intermediate solubility index (48.2 ± 3.12%), low water holding capacity (12.4 ± 1.93%), and pseudoplastic rheologic shear-thinning comparable to xanthan gum. It revealed antimicrobial potential against human pathogens and antioxidants as well as anti-inflammatory potential. The biocontrol assay of EPS against phytopathogens revealed the highest activity against Alternaria solani. The EPS-coated and control tomato fruits were treated with A. solani suspension to check the % disease incidence, which revealed a significant (p < 0.001) decline compared to uncoated controls. Moreover, it revealed shelf-life prolonging action on tomatoes comparable to xanthan gum and higher than chitosan. Consequently, the presented marine EPS was elucidated as a potent coating material to mitigate post-harvest losses.
Collapse
Affiliation(s)
- Chandni Upadhyaya
- School of Sciences, P. P. Savani University, Surat 394125, Gujarat, India
| | - Hiren Patel
- School of Sciences, P. P. Savani University, Surat 394125, Gujarat, India
- School of Agriculture, P. P. Savani University, Surat 394125, Gujarat, India
| | - Ishita Patel
- Shree P. M. Patel Institute of Integrated M. Sc. in Biotechnology, Sardar Patel University, Anand 388001, Gujarat, India
| | - Parth Ahir
- Shree P. M. Patel Institute of P. G. Studies in Research and Sciences, Sardar Patel University, Anand 388001, Gujarat, India
| | - Trushit Upadhyaya
- Chandubhai S. Patel Institute of Technology, Charotar University of Science & Technology, Changa, Anand 388421, Gujarat, India;
| |
Collapse
|
9
|
Elmansy EA, Elkady EM, Asker MS, Abdallah NA, Khalil BE, Amer SK. Improved production of lactiplantibacillus plantarum RO30 exopolysaccharide (REPS) by optimization of process parameters through statistical experimental designs. BMC Microbiol 2023; 23:361. [PMID: 37993835 PMCID: PMC10664612 DOI: 10.1186/s12866-023-03117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND In investigating of (exopolysaccharide) EPS from unconventional sources, lactic acid bacteria have a vital role due to their generally recognized as safe (GRAS) status. EPSs have diverse applications such as drug delivery, antimicrobial activity, surgical implants, and many more in many sectors. Despite being important, the main hindrance to the commercial application of these significant biopolymers is low productivity. Therefore, this study primarily focuses on optimizing physio-chemical conditions to maximize the previously produced EPS from probiotic Lactiplantibacillus plantarum RO30 (L. plantarum RO30) using one factor at a time (OFAT) and method Response Surface Methodology (RSM). RESULTS The EPS obtained from L. plantarum RO30 named REPS. The medium formulation for REPS production using the OFAT method revealed that sucrose (20 g/L, beef extract (25 g/L), and ammonium sulfate at 4 g/L concentration were the optimum carbon, organic and inorganic nitrogen sources, and REPS yield was increased up to 9.11 ± 0.51 g/L. RSM experiments revealed that, a greatly significant quadratic polynomial attained from the Central Composite Design (CCD) model was fruitful for specifying the most favorable cultural conditions that have significant consequences on REPS yield. The maximal amount of REPS (10.32 g/L) was formed by: sucrose (40 g/L), beef extract (25 g/L), pH (5.5), incubation temperature (30 °C), and incubation period (72 h). A high closeness was obtained between the predicted and experimental values and it displayed the efficiency of the RSM. CONCLUSION This study was conducted to reinforce REPS production in the probiotic LAB L. plantarum RO30 by utilizing various experimental parameters. The maximum REPS yield of 10.32 g/L was attained under the circumstances optimized in the study.
Collapse
Affiliation(s)
- Eman Ahmed Elmansy
- Microbial Biotechnology Department, Institute of Biotechnology Research, National Research Centre, El-Tahreer Street, Dokki, Cairo, Egypt.
| | - Ebtsam M Elkady
- Microbial Biotechnology Department, Institute of Biotechnology Research, National Research Centre, El-Tahreer Street, Dokki, Cairo, Egypt
| | - Mohsen S Asker
- Microbial Biotechnology Department, Institute of Biotechnology Research, National Research Centre, El-Tahreer Street, Dokki, Cairo, Egypt
| | - Nagwa A Abdallah
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Bigad E Khalil
- Microbial Genetics Department, Institute Of Biotechnology Research, National Research Centre, El-Tahreer Street, Dokki, Cairo, Egypt
| | - Shaimaa K Amer
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Şirin S. Lactic Acid Bacteria-Derived Exopolysaccharides Mitigate the Oxidative Response via the NRF2-KEAP1 Pathway in PC12 Cells. Curr Issues Mol Biol 2023; 45:8071-8090. [PMID: 37886953 PMCID: PMC10605729 DOI: 10.3390/cimb45100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Parabiotics, including L-EPSs, have been administered to patients with neurodegenerative disorders. However, the antioxidant properties of L-EPSs against H2O2-induced oxidative stress in PC12 cells have not been studied. Herein, we aimed to investigate the antioxidant properties of the L-EPSs, their plausible targets, and their mechanism of action. We first determined the amount of L-EPSs in Lactobacillus delbrueckii ssp. bulgaricus B3 and Lactiplantibacillus plantarum GD2 using spectrophotometry. Afterwards, we studied their effects on TDH, TOS/TAS, antioxidant enzyme activities, and intracellular ROS level. Finally, we used qRT-PCR and ELISA to determine the effects of L-EPSs on the NRF2-KEAP1 pathway. According to our results, the L-EPS groups exhibited significantly higher total thiol activity, native thiol activity, disulfide activity, TAS levels, antioxidant enzyme levels, and gene expression levels (GCLC, HO-1, NRF2, and NQO1) than did the H2O2 group. Additionally, the L-EPS groups caused significant reductions in TOS levels and KEAP1 gene expression levels compared with those in the H2O2 group. Our results indicate that H2O2-induced oxidative stress was modified by L-EPSs. Thus, we revealed that L-EPSs, which regulate H2O2-induced oxidative stress, could have applications in the field of neurochemistry.
Collapse
Affiliation(s)
- Seda Şirin
- Department of Biology, Faculty of Science, Gazi University, Teknikokullar, 06500 Ankara, Turkey
| |
Collapse
|
11
|
Kumari M, Haranahalli Nataraj B, Prasad WG, Ali SA, Behare PV. Multi-Faceted Bioactivity Assessment of an Exopolysaccharide from Limosilactobacillus fermentum NCDC400: Antioxidant, Antibacterial, and Immunomodulatory Proficiencies. Foods 2023; 12:3595. [PMID: 37835248 PMCID: PMC10572761 DOI: 10.3390/foods12193595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Exopolysaccharides (EPS) are acknowledged for their diverse functional and technological properties. This study presents the characterization of EPS400, an acidic exopolysaccharide sourced from the native probiotic Limosilactobacillus fermentum NCDC400. Notably, this strain has demonstrated previous capabilities in enhancing dairy food texture and displaying in vivo hypocholesterolemic activity. Our investigation aimed to unveil EPS400's potential biological roles, encompassing antioxidant, antibacterial, and immunomodulatory activities. The results underscore EPS400's prowess in scavenging radicals, including the 2,2-diphenyl-1-picrylhydrazyl radical, 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid) radical, superoxide radical, hydroxyl radical, and chelating activity targeting the ferrous ion. Furthermore, EPS400 displayed substantial antibacterial effectiveness against prevalent food spoilage bacteria such as Pseudomonas aeruginosa NCDC105 and Micrococcus luteus. Remarkably, EPS400 exhibited the ability to modulate cytokine production, downregulating pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and nitric oxide, while concurrently promoting the release of anti-inflammatory cytokine IL-10 within lipopolysaccharide-activated murine primary macrophages. Additionally, EPS400 significantly (p ≤ 0.05) enhanced the phagocytic potential of macrophages. Collectively, our findings spotlight EPS400 as a promising contender endowed with significant antioxidant, antibacterial, and immunomodulatory attributes. These characteristics propose EPS400 as a potential pharmaceutical or bioactive component, with potential applications in the realm of functional food development.
Collapse
Affiliation(s)
- Manorama Kumari
- Technofunctional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India
| | - Basavaprabhu Haranahalli Nataraj
- Dairy Chemistry and Bacteriology Section, Southern Regional Station, ICAR-National Dairy Research Institute, Bengaluru 560030, India
| | - Writdhama G. Prasad
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal 132001, India;
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal 132001, India
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Pradip V. Behare
- Technofunctional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India
| |
Collapse
|