1
|
Upadhyay S, Sharanagat VS. Plant protein-based Pickering emulsion for the encapsulation and delivery of fat-soluble vitamins: A systematic review. Int J Biol Macromol 2025:141635. [PMID: 40037448 DOI: 10.1016/j.ijbiomac.2025.141635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/29/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Vitamin deficiencies pose a significant global health challenge, leading to various health issues and economic burdens. These challenges arise with the delivery of fat-soluble vitamin (FSV) due to its poor stability against the environmental stimuli. The commercial fortification methods such as Pickering emulsion (PE), hydrogel and others offer a potential solution over the limitations of conventional vitamin delivery methods (degradation and poor bioavailability). PE stabilized by solid plant protein particles, have emerged as a promising approach for encapsulation and delivery of oil-soluble vitamins (A, D, E, and K). Plant proteins, with their amphiphilic nature and nutritional benefits, are particularly well-suited as a stabilizer for PE. Plant protein-based PE enhances protection of vitamins against the environmental stimuli and enhances the delivery efficiency of oil-soluble vitamins. Factors such as particle size, concentration, and oil type also influence the stability, encapsulation efficiency, and bio-accessibility of fat-soluble vitamins in PE. Hence, the present review explores the impact of various factors on the stability and bio-accessibility of fat-soluble vitamins (A, D and E) and also emphasizing the role of particle size and concentration of stabilizer in controlling release rates of vitamin encapsulated PE. The review also highlights the application of plant protein-based PEs in various food products including nutrient fortification, functional foods, and 3D food printing.
Collapse
Affiliation(s)
- Srishti Upadhyay
- National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | | |
Collapse
|
2
|
Liu Y, Dong F, Zhou L, Zhao Q, Zhang S. Development of soybean protein-based bioactive substances delivery systems: A systematic overview based on recent researches. Int J Biol Macromol 2025; 285:137998. [PMID: 39626811 DOI: 10.1016/j.ijbiomac.2024.137998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Some bioactive substances in food have problems such as poor solubility, unstable chemical properties and low bioavailability, which limit their application in functional foods. In recent years, in order to improve the above problems of bioactive substances, soybean protein-based drug delivery systems have been developed. This article reviewed the structure and properties of several major soybean protein commonly used to construct bioactive substance delivery systems. Several common carrier types based on soybean protein were then introduced. The biological functions and limitations of several common soybean protein delivery bioactive substances and the role of soybean protein-based delivery systems were discussed. At present, soybean protein is the most widely used in drug delivery systems. Soybean protein-based nano-particles are currently the most commonly used delivery carriers. Soybean protein-based hydrogels, emulsions, microcapsules and electrospinning are also widely used. Polyphenols, carotenoids, vitamins, functional oils and probiotics are bioactive substances that are frequently delivered. However, in order to promote the application of soybean protein-based delivery systems in food, soybean protein peptidyl delivery vectors and collaborative delivery are the future development trends. In addition, a number of challenges must be addressed, including the sensitization of soybean protein, intolerance to environmental conditions, and the limitations of processing technologies.
Collapse
Affiliation(s)
- Yuexin Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fengjuan Dong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Linyi Zhou
- School of food and health, Beijing Technology and Business University, Beijing 100048, China
| | - Qingkui Zhao
- Research and Product Development Center, Shandong Guohong Biotechnology Company Limited, Liaocheng, Shandong 252899, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research and Product Development Center, Shandong Guohong Biotechnology Company Limited, Liaocheng, Shandong 252899, China.
| |
Collapse
|
3
|
Hussain Badar I, Wang Z, Chen Q, Liu Q, Ma J, Liu H, Kong B. Ultrasonic enhancement of structural and emulsifying properties of heat-treated soy protein isolate nanoparticles to fabricate flaxseed-derived diglyceride-based pickering emulsions. Food Chem 2024; 442:138469. [PMID: 38266416 DOI: 10.1016/j.foodchem.2024.138469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Flaxseed-derived diglyceride (DAG)-based Pickering emulsions were fabricated using soy protein isolate (SPI) nanoparticles as stabilizer. The SPI nanoparticles were prepared under the combined action of heating and ultrasound treatment. The SPI nanoparticles exposed to 600 W power exhibited the smallest particle size (133.36 nm) and zeta potential (-34.77 mV). Ultrasonic treatment did not significantly impact the polypeptide chain's primary structure but induced changes in the secondary structure. The Pickering emulsions stabilized with ultrasound-treated SPI nanoparticles showed smaller particle size, lower zeta potential, and improved emulsifying properties. Notably, at 450 W power, these emulsions showed a higher solid-liquid balance, reduced mean square displacement, backscattering fluctuations, and turbiscan stability index. Besides, they displayed a more compact microstructure with smaller droplets. In conclusion, SPI subjected to heating and 450 W ultrasound power resulted in the fabrication of DAG-based Pickering emulsions with enhanced microstructure and stability.
Collapse
Affiliation(s)
- Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Ziyi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Ma
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
4
|
Badar IH, Wang Z, Sun F, Xia X, Chen Q, Liu Q, Kong B, Liu H. Influence of varying oil phase volume fractions on the characteristics of flaxseed-derived diglyceride-based Pickering emulsions stabilized by modified soy protein isolate. Food Res Int 2024; 175:113812. [PMID: 38129013 DOI: 10.1016/j.foodres.2023.113812] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
This research aimed to create Pickering emulsions using modified soy protein isolate (SPI) as a stabilizer and flaxseed-derived diglyceride (DAG) as an oil phase. The SPI was modified through a process involving both heating and ultrasound treatment. The result indicated that the droplet size of emulsions increased with the increase in oil content (p < 0.05). For instance, the largest droplet size (23 µm) was observed at an oil-to-SPI dispersion ratio of 4:1 ratio (φ = 80), whereas the smallest droplet size (6.39 µm) was noticed at the 1:4 ratio. During the 7-day storage period, the emulsions with a 4:1 ratio (φ = 80) showed the lowest droplet size increase (from 23 µm to 25.58 µm). In contrast, the emulsions with a 1:1 ratio displayed the highest increase (from 19.39 µm to 74.29 µm). Creaming index results revealed that emulsions with a 4:1 ratio (φ = 80) showed no signs of creaming and phase separation than all other treatments (p < 0.05). Backscattering fluctuations (ΔBS) and turbiscan stability index (TSI) showed that emulsions with 4:1, 2:1, and 1:1 oil-to-SPI dispersion ratios had consistent ΔBS curves with higher and TSI curves with lower values. Optical microscopy, confocal laser scanning, and cryo-scanning electron microscopy revealed that emulsions with oil-to-SPI dispersion ratios of 4:1 and 2:1 had well-organized structures with no visible coalescence. Macromorphological and microrheological investigations demonstrated that emulsions with 80% oil content had the highest viscosity, both moduli, elasticity index, macroscopic viscosity index, and the lowest fluidity index and solid-liquid balance values. Moreover, these emulsions were more resistant to centrifugation and storage environments. In conclusion, the study determined that flaxseed-derived DAG-based high internal phase Pickering emulsions (φ = 80) had superior stability, improved viscoelasticity, and better rheological properties.
Collapse
Affiliation(s)
- Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Ziyi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|