1
|
Hu Q, Huang G, Huang H. Extraction, structure, activity and application of konjac glucomannan. ULTRASONICS SONOCHEMISTRY 2025; 116:107315. [PMID: 40117876 PMCID: PMC11979519 DOI: 10.1016/j.ultsonch.2025.107315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/08/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
Konjac is a perennial herbaceous plant from the Araceae family's Amorphophallus genus. It has high nutritional, health, and pharmacological values. It contains various bioactive components, the most notable of which is konjac glucomannan, which has several biological roles, including efficiently fighting diabetes, exerting prebiotic activity, containing antioxidant capacity, modulating immunological function, and demonstrating anti-cancer potential. Currently, the konjac glucomannan (KGM) research mainly focuses on packaging film, gel characteristics, efficacy, and evaluation. However, the extraction, underlying portrayal, derivatization, and action of KGM are seldom detailed. Herein, the utilization of konjac as an unrefined substance was surveyed, meaning to give extensive and orderly recombinant data on the extraction, decontamination, structure, natural movement, derivatization, and use of KGM to provide a full play to the interesting gelatinate, biocompatibility, high viscosity and other properties of KGM. It provided a theoretical basis for further developing the konjac glucomannan food industry, pharmaceutical field, and other fields.
Collapse
Affiliation(s)
- Qiurui Hu
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430074, China.
| |
Collapse
|
2
|
Wang S, Fan Z, Huang X, Gao Y, Sui H, Yang J, Li B. Preparation of Chitosan Oleogel from Capillary Suspension and Its Application in Pork Meatballs. Gels 2024; 10:826. [PMID: 39727584 DOI: 10.3390/gels10120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
In the oil dispersion of chitosan, the formation of a capillary bridge was triggered by adding a small amount of water to obtain an oleogel. With this method, the types of liquid oil and the ratio of oil/chitosan/water were explored to achieve an optimal oleogel. MCT performed best, followed by soybean oil, which was chosen for its edibility and cost. Increasing chitosan from 15% to 45% reduced oil loss from 46% to 13%, and raising the water/chitosan ratio from 0 to 0.8 lowered oil loss from 37% to 13%. After normalization, the optimal soybean oil, chitosan, and water ratio was 1:0.45:0.36, yielding a solid-like appearance, minimal oil loss of 13%, and maximum gel strength and viscosity. To assess the potential application of the optimized oleogel, it was incorporated into pork meatballs as a replacement for pork fat. Textural and cooking experiments revealed that as the oleogel content increased, the hardness of the pork meatballs increased, while the cooking loss decreased. It suggested that the chitosan oleogel could enhance the quality of pork meatballs while also contributing to a healthier product by reducing saturated fat content.
Collapse
Affiliation(s)
- Shishuai Wang
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Zhongqin Fan
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Xinya Huang
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Yue Gao
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Hongwei Sui
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Jun Yang
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Majigsuren E, Byambasuren U, Bat-Amgalan M, Mendsaikhan E, Kano N, Kim HJ, Yunden G. Adsorption of Chromium (III) and Chromium (VI) Ions from Aqueous Solution Using Chitosan-Clay Composite Materials. Polymers (Basel) 2024; 16:1399. [PMID: 38794592 PMCID: PMC11125037 DOI: 10.3390/polym16101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
In this work, biopolymer chitosan and natural clay were used to obtain composite materials. The overall aim of this study was to improve the properties (porosity, thermal stability and density) of pure chitosan beads by the addition of clay and to obtain a chitosan-based composite material for the adsorption of heavy metals from an aqueous solution, using Mongolian resources, and to study the adsorption mechanism. The natural clay was pre-treated with acid and heat to remove the impurities. The chitosan and pre-treated clay were mixed in different ratios (8:1, 8:2 and 8:3) for chemical processing to obtain a composite bead for the adsorption of chromium ions. The adsorption of Cr(III) and Cr(VI) was studied as a function of the solution pH, time, temperature, initial concentration of the chromium solution and mass of the composite bead. It was found that the composite bead obtained from the mixture of chitosan and treated clay with a mass ratio of 8:1 and 8:2 had the highest adsorption capacity (23.5 and 17.31 mg·g-1) for Cr(III) and Cr(VI), respectively, in the optimum conditions. The properties of the composite materials, prepared by mixing chitosan and clay with a ratio of 8:1 and 8:2, were investigated using XRD, SEM-EDS, BET and TG analysis. The adsorption mechanism was discussed based on the XPS analysis results. It was confirmed that the chromium ions were adsorbed in their original form, such as Cr(III) and Cr(VI), without undergoing oxidation or reduction reactions. Furthermore, Cr(III) and Cr(VI) were associated with the hydroxyl and amino groups of the composite beads during adsorption. The kinetic, thermodynamic and isothermal analysis of the adsorption process revealed that the interaction between the chitosan/clay composite bead and Cr(III) and Cr(VI) ions can be considered as a second-order endothermic reaction, as such the adsorption can be assessed using the Langmuir isotherm model. It was concluded that the composite bead could be used as an adsorbent for the removal of chromium ions.
Collapse
Affiliation(s)
- Enkhtuya Majigsuren
- Department of Chemical Engineering, School of Applied Sciences, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia; (E.M.); (U.B.); (M.B.-A.); (E.M.)
| | - Ulziidelger Byambasuren
- Department of Chemical Engineering, School of Applied Sciences, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia; (E.M.); (U.B.); (M.B.-A.); (E.M.)
| | - Munkhpurev Bat-Amgalan
- Department of Chemical Engineering, School of Applied Sciences, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia; (E.M.); (U.B.); (M.B.-A.); (E.M.)
- Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, Niigata 950-2181, Japan;
| | - Enkhtuul Mendsaikhan
- Department of Chemical Engineering, School of Applied Sciences, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia; (E.M.); (U.B.); (M.B.-A.); (E.M.)
- Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, Niigata 950-2181, Japan;
| | - Naoki Kano
- Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, Niigata 950-2181, Japan;
| | - Hee Joon Kim
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced, Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Ganchimeg Yunden
- Department of Chemical Engineering, School of Applied Sciences, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia; (E.M.); (U.B.); (M.B.-A.); (E.M.)
| |
Collapse
|
4
|
Zhang Y, Tong C, Chen Y, Xia X, Jiang S, Qiu C, Pang J. Advances in the construction and application of konjac glucomannan-based delivery systems. Int J Biol Macromol 2024; 262:129940. [PMID: 38320637 DOI: 10.1016/j.ijbiomac.2024.129940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Konjac glucomannan (KGM) has been widely used to deliver bioactive components due to its naturalness, non-toxicity, excellent biodegradability, biocompatibility, and other characteristics. This review presents an overview of konjac glucomannan as a matrix, and the types of konjac glucomannan-based delivery systems (such as hydrogels, food packaging films, microencapsulation, emulsions, nanomicelles) and their construction methods are introduced in detail. Furthermore, taking polyphenol compounds, probiotics, flavor substances, fatty acids, and other components as representatives, the applied research progress of konjac glucomannan-based delivery systems in food are summarized. Finally, the prospects for research directions in konjac glucomannan-based delivery systems are examined, thereby providing a theoretical basis for expanding the application of konjac glucomannan in other industries, such as food and medicine.
Collapse
Affiliation(s)
- Yanting Zhang
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China
| | - Cailing Tong
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China
| | - Yuanyuan Chen
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China
| | - Xiaolu Xia
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China
| | - Shizhong Jiang
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China
| | - Chao Qiu
- School of Food Science and Technology, Jiangnan University, 214122, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China.
| |
Collapse
|