1
|
Fan Y, Badar IH, Liu Q, Xia X, Chen Q, Kong B, Sun F. Insights into the flavor contribution, mechanisms of action, and future trends of coagulase-negative staphylococci in fermented meat products: A review. Meat Sci 2025; 221:109732. [PMID: 39708546 DOI: 10.1016/j.meatsci.2024.109732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
During fermentation, meat is pre-treated and cured to cultivate a diverse microflora, resulting in fermented meat products with distinctive flavors. Coagulase-negative staphylococcus holds a crucial role in all fermented meat products, contributing to the breakdown of proteins, carbohydrates, and fats, and the creation of flavor compounds. Fermentation technology has important research value and significance in fermented meat products. The optimization and improvement of flavor by CNS can be achieved by regulating the fermentation environment, initial microflora and processing conditions. The review explores the ways in which coagulase-negative staphylococci contribute to the flavors in fermented meat products. The mechanism of flavor substance formation and means of regulation in coagulase-negative staphylococci were also investigated. The review concludes by summarizing future development trends and drawing conclusions.
Collapse
Affiliation(s)
- Yuhang Fan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Iftikhar Hussain Badar
- Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
Yang L, Li H, Wu H, Sun X, Liu S, He Z. Investigating Flavor Enhancement Methods in NaCl-Reduced Chinese Bacon ( Larou) by Focusing on Physicochemical Characteristics, Bacterial Diversity, and Volatiles. Foods 2024; 13:3820. [PMID: 39682892 DOI: 10.3390/foods13233820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The higher NaCl concentration of Chinese bacon, which features a unique flavor, is a major restriction to consumption. Investigating the role of NaCl in Chinese bacon (Larou) would be beneficial to optimize the dosage and enhance flavor. This study was conducted to categorize Larou by comparing the quality of Larou cured with different concentrations of NaCl and then to investigate the methods of flavor enhancement of NaCl-reduced Larou. The results showed that, based on the differences in quality, Larou were categorized into three types, including the low-NaCl type (<4%, LT), the medium-NaCl type (4-8%, MT), and the high-NaCl type (>8%, HT). The vital physicochemical characteristics (PCs), predominant bacteria, and key volatile compounds (VOCs) were different for each type of Larou. The PCs contributing to the regulation of VOCs were total volatile basic nitrogen (TVB-N) and pH in LT, thiobarbituric acid reactive substance assay (TBARS) in MT, NaNO2, and moisture content in HT. Lactococcus or Lactobacillus, Staphylococcus, and Kocuria were flavor-producing bacteria in LT, MT, and HT, respectively. Vital PCs and predominant bacteria were associated with several key aldehydes, alcohols, and esters in Larou. Increasing the TVB-N, TBARS, and moisture content, decreasing the pH and NaNO2 properly, and inoculating with Staphylococcus and Kocuria were effective methods to enhance the flavor of LT. Vital PCs and predominant bacteria are prioritized to meet most of the quality and the biosafety, although key VOCs may be sacrificed at this point.
Collapse
Affiliation(s)
- Li Yang
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Hongjun Li
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
- Chongqing Engineering Research Center of Regional Food, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Han Wu
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Xuelian Sun
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Shuyun Liu
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Zhifei He
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
- Chongqing Engineering Research Center of Regional Food, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| |
Collapse
|
3
|
Hu K, Guo K, Wang X, Wang S, Li J, Li Q, Zhao N, Liu A, He L, Hu X, Yang Y, Zou L, Chen S, Liu S. Occurrence of ochratoxin A in Sichuan bacon from different geographical regions and characterization and biocontrol of ochratoxigenic Aspergillus westerdijkiae strain 21G2-1A. Food Res Int 2024; 184:114272. [PMID: 38609249 DOI: 10.1016/j.foodres.2024.114272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Sichuan bacon represents the most prevalent dry-cured meat product across Southwest China, but it is vulnerable to fungal spoilage. In the present study, a total of 47 Sichuan bacons were obtained from different regions of the Sichuan Province and analyzed for the presence of ochratoxin A (OTA), yielding a positive rate of 23.4 % (11/47). All the observed OTA concentrations exceeded the maximum admissible dose in meat products (1 μg/kg) established by some EU countries, with the highest OTA concentration being 250.75 μg/kg, which raises a food safety concern and reveals the need for a standardized scientific processing protocol. Then, an OTA-producing fungus named 21G2-1A was isolated from positive samples and found to be Aspergillus westerdijkiae. Further characterization suggested a positive correlation between fungal growth and OTA production. The optimal temperature for the former was 25 °C, while it was 20 °C for the latter. Although the A. westerdijkiae strain 21G2-1A demonstrated greater mycelium growth in the presence of NaCl, OTA production was significantly dismissed when the salinity was greater than 5 %. Four lactic acid bacteria (LAB) were screened out as antagonists against the ochratoxigenic fungus. In vitro evaluation of the antagonists revealed that live cells inhibited fungal growth, and adsorption also contributed to OTA removal at different levels. This study sheds some light on OTA control in Sichuan bacon through a biological approach.
Collapse
Affiliation(s)
- Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Keyu Guo
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xingjie Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Song Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Ning Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xinjie Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China.
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China.
| |
Collapse
|
4
|
Geng J, Cao Q, Jiang S, Huangfu J, Wang W, Niu Z. Evaluation of Dynamic Changes of Volatile Organic Components for Fishmeal during Storage by HS-SPME-GC-MS with PLS-DA. Foods 2024; 13:1290. [PMID: 38731661 PMCID: PMC11083336 DOI: 10.3390/foods13091290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Headspace solid-phase microextraction, combined with gas chromatography-mass spectrometry and partial least squares discriminant analysis, was adopted to study the rule of change in volatile organic compounds (VOCs) for domestic and imported fishmeal during storage with different freshness grades. The results showed that 318 kinds of VOCs were detected in domestic fishmeal, while 194 VOCs were detected in imported fishmeal. The total relative content of VOCs increased with storage time, among which acids and nitrogen-containing compounds increased significantly, esters and ketones increased slightly, and phenolic and ether compounds were detected only in domestic fishmeal. Regarding the volatile base nitrogen, acid value, pH value, and mold counts as freshness indexes, the freshness indexes were significantly correlated with nine kinds of VOCs (p < 0.05) through the correlation analysis. Among them, volatile base nitrogen had a significant correlation with VOCs containing nitrogen, acid value with VOCs containing carboxyl group and hydrocarbons, pH value with acids which could be used to adjust pH value, and mold counts with part of acids adjusting pH value and VOCs containing nitrogen. Due to the fact that the value of all freshness indexes increased with freshness degradation during storage, based on volatile base nitrogen and acid value, the fishmeal was divided into three freshness grades, superior freshness, corrupting, and completely corrupted. By using partial least squares discriminant analysis, this study revealed the differences in flavor of the domestic and imported fishmeal during storage with different freshness grades, and it identified four common characteristic VOCs, namely ethoxyquinoline, 6,7,8,9-tetrahydro-3H-benzo[e]indole-1,2-dione, hexadecanoic acid, and heptadecane, produced by the fishmeal samples during storage, as well as the characteristic VOCs of fishmeal at each freshness grade.
Collapse
Affiliation(s)
- Jie Geng
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; (J.G.); (Q.C.); (S.J.); (J.H.); (W.W.)
- Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture, Wuhan 430070, China
| | - Qing Cao
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; (J.G.); (Q.C.); (S.J.); (J.H.); (W.W.)
- Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture, Wuhan 430070, China
| | - Shanchen Jiang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; (J.G.); (Q.C.); (S.J.); (J.H.); (W.W.)
- Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture, Wuhan 430070, China
| | - Jixuan Huangfu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; (J.G.); (Q.C.); (S.J.); (J.H.); (W.W.)
- Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture, Wuhan 430070, China
| | - Weixia Wang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; (J.G.); (Q.C.); (S.J.); (J.H.); (W.W.)
- Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture, Wuhan 430070, China
| | - Zhiyou Niu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; (J.G.); (Q.C.); (S.J.); (J.H.); (W.W.)
- Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture, Wuhan 430070, China
| |
Collapse
|