1
|
Barekat S, Ubeyitogullari A. Maximizing sorghum proteins printability: Optimizing gel formulation and 3D-printing parameters to develop a novel bioink. Int J Biol Macromol 2025; 300:140245. [PMID: 39864687 DOI: 10.1016/j.ijbiomac.2025.140245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
The objective of this study was to form sorghum protein gels and explore their application in 3D food printing. Sorghum proteins were used to prepare gels with concentrations of 15 %, 20 %, 25 %, 30 %, and 35 % (w/w) in 70 % ethanol. The gels were evaluated for their rheological and textural properties and utilized as bioinks for 3D printing. Gels with 35 % and 15 % (w/w) protein concentrations exhibited poor texture and rheological properties, while gels with 20-30 % (w/w) showed better 3D printability. The optimal printing speed was 20 mm/s, which improved shape accuracy and reduced fusion issues compared to lower speeds. The best results were achieved with a 25 % protein and a 0.64 mm nozzle size, aligning closely with the digital design. SEM images confirmed gel network formation, chemical analysis showed increased β-sheet structure after gelation, and X-ray diffraction indicated an amorphous structure. These findings highlight the influence of protein concentration on gel texture and rheological properties, and the impact of printing speed and nozzle size on the printability and structural integrity of sorghum-protein gels. Overall, this study developed a novel hydrophobic bioink based on sorghum proteins for 3D food printing for the first time, which can find various food and pharmaceutical applications.
Collapse
Affiliation(s)
- Sorour Barekat
- Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA
| | - Ali Ubeyitogullari
- Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA; Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
2
|
Caron E, Van de Walle D, Dewettinck K, Marchesini FH. State of the art, challenges, and future prospects for the multi-material 3D printing of plant-based meat. Food Res Int 2024; 192:114712. [PMID: 39147544 DOI: 10.1016/j.foodres.2024.114712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 08/17/2024]
Abstract
The emergence of innovative plant-based meat analogs, replicating the flavor, texture, and appearance of animal meat cuts, is deemed crucial for sustainably feeding a growing population while mitigating the environmental impact associated with livestock farming. Multi-material 3D food printing (MM3DFP) has been proposed as a potentially disruptive technology for manufacturing the next generation of plant-based meat analogs. This article provides a comprehensive review of the state of the art, addressing various aspects of 3D printing in the realm of plant-based meat. The disruptive potential of printed meat analogs is discussed with particular emphasis on protein-rich, lipid-rich, and blood-mimicking food inks. The printing parameters, printing requirements, and rheological properties at the different printing stages are addressed in detail. As food rheology plays a key role in the printing process, an appraisal of this subject is performed. Post-printing treatments are assessed based on the extent of improvement in the quality of 3D-printed plant-based meat analogs. The meat-mimicking potential is revealed through sensory attributes, such as texture and flavor. Furthermore, there has been limited research into food safety and nutrition. Economically, the 3D printing of plant-based meat analogs demonstrates significant market potential, contingent upon innovative decision-making strategies and supportive policies to enhance consumer acceptance. This review examines the current limitations of this technology and highlights opportunities for future developments.
Collapse
Affiliation(s)
- Elise Caron
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9052 Zwijnaarde, Belgium; Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium.
| | - Davy Van de Walle
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium
| | - Koen Dewettinck
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium
| | - Flávio H Marchesini
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9052 Zwijnaarde, Belgium
| |
Collapse
|
3
|
Olawade DB, Wada OZ, Ige AO. Advances and recent trends in plant-based materials and edible films: a mini-review. Front Chem 2024; 12:1441650. [PMID: 39233921 PMCID: PMC11371721 DOI: 10.3389/fchem.2024.1441650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Plant-based materials and edible films have emerged as promising alternatives to conventional packaging materials, offering sustainable and environmentally friendly solutions. This mini-review highlights the significance of plant-based materials derived from polysaccharides, proteins, and lipids, showcasing their renewable and biodegradable nature. The properties of edible films, including mechanical strength, barrier properties, optical characteristics, thermal stability, and shelf-life extension, are explored, showcasing their suitability for food packaging and other applications. Moreover, the application of 3D printing technology allows for customized designs and complex geometries, paving the way for personalized nutrition. Functionalization strategies, such as active and intelligent packaging, incorporation of bioactive compounds, and antimicrobial properties, are also discussed, offering additional functionalities and benefits. Challenges and future directions are identified, emphasizing the importance of sustainability, scalability, regulation, and performance optimization. The potential impact of plant-based materials and edible films is highlighted, ranging from reducing reliance on fossil fuels to mitigating plastic waste and promoting a circular economy. In conclusion, plant-based materials and edible films hold great potential in revolutionizing the packaging industry, offering sustainable alternatives to conventional materials. Embracing these innovations will contribute to reducing plastic waste, promoting a circular economy, and creating a sustainable and resilient planet.
Collapse
Affiliation(s)
- David B Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, United Kingdom
- Department of Public Health, York St John University, London, United Kingdom
| | - Ojima Z Wada
- Division of Sustainable Development, College of Science and Engineering, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
| | - Abimbola O Ige
- Department of Chemistry, Faculty of Science, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
4
|
Bhuiyan MHR, Ngadi M. Thermomechanical transitions of meat-analog based fried foods batter coating. Food Chem 2024; 447:138953. [PMID: 38479144 DOI: 10.1016/j.foodchem.2024.138953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024]
Abstract
This study aimed to characterize the thermomechanical transitions of meat-analog (MA) based coated fried foods. Wheat and rice flour-based batters were used to coat the MA and fried at 180 °C in canola oil for 2, 4 and 6 min. Glass-transition-temperature (Tg) of the coatings were assessed by differential scanning calorimetry, directly after frying or after post-fry holding. Mechanical texture analyzer and X-ray microtomography were employed to assess textural attributes and internal microstructure, respectively. Batter-formulation substantially impacted the Tg of fried foods coating i.e., crust. Tg of fried foods crust were ranged between -20 °C to -24 °C. Tg was positively correlated with frying time and internal microporosity (%), whereas negatively correlated with moisture content. Internal microstructure greatly influenced the textural attributes (hardness, brittleness, crispiness). Post-fry textural stability considerably impacted by Tg. Negative Tg value explains post-fry textural changes (hard-to-soft, brittle-to-ductile, crispy-to-soggy) of MA-based coated products at room-temperature (25 °C) and under IR-heating (65 °C).
Collapse
Affiliation(s)
- Md Hafizur Rahman Bhuiyan
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| | - Michael Ngadi
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
5
|
Wang Y, Tao L, Wang Z, Wang Y, Lin X, Dai J, Shi C, Dai T, Sheng J, Tian Y. Effect of succinylation-assisted glycosylation on the structural characteristics, emulsifying, and gel properties of walnut glutenin. Food Chem 2024; 446:138856. [PMID: 38430765 DOI: 10.1016/j.foodchem.2024.138856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
In this study, we examined the effects of various sodium alginate (ALG) concentrations (0.2%-0.8%) on the functional and physicochemical characteristics of succinylated walnut glutenin (GLU-SA). The results showed that acylation decreased the particle size and zeta potential of walnut glutenin (GLU) by 122- and 0.27-fold, respectively. In addition, the protein structure unfolded, providing conditions for glycosylation. After GLU-SA was combined with ALG, the surface hydrophobicity decreased and the net negative charge and disulfide bond content increased. The protein structure was analyzed by FTIR, Endogenous fluorescence spectroscopy, and SEM, and ALG prompted GLU-SA cross-linking to form a stable three-dimensional network structure. The results indicated that dual modification improved the functional properties of the complex, especially its potential protein gel and emulsifying properties. This research provide theoretical support and a technical reference for expanding the application of GLU in the processing of protein and oil products.
Collapse
Affiliation(s)
- Yuanli Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China.
| | - Zilin Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yue Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Xinyue Lin
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiahe Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Chongying Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Tianyi Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; Puer University, Puer 665000, China.
| |
Collapse
|
6
|
Chen X, Zhou Z, Yang M, Zhu S, Zhu W, Sun J, Yu M, He J, Zuo Y, Wang W, He N, Han X, Liu H. A biocompatible pea protein isolate-derived bioink for 3D bioprinting and tissue engineering. J Mater Chem B 2024; 12:6716-6723. [PMID: 38899871 DOI: 10.1039/d4tb00781f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Three-dimensional bioprinting is a potent biofabrication technique in tissue engineering but is limited by inadequate bioink availability. Plant-derived proteins are increasingly recognized as highly promising yet underutilized materials for biomedical product development and hold potential for use in bioink formulations. Herein, we report the development of a biocompatible plant protein bioink from pea protein isolate. Through pH shifting, ethanol precipitation, and lyophilization, the pea protein isolate (PPI) transformed from an insoluble to a soluble form. Next, it was modified with glycidyl methacrylate to obtain methacrylate-modified PPI (PPIGMA), which is photocurable and was used as the precursor of bioink. The mechanical and microstructural studies of the hydrogel containing 16% PPIGMA revealed a suitable compress modulus and a porous network with a pore size over 100 μm, which can facilitate nutrient and waste transportation. The PPIGMA bioink exhibited good 3D bioprinting performance in creating complex patterns and good biocompatibility as plenty of viable cells were observed in the printed samples after 3 days of incubation in the cell culture medium. No immunogenicity of the PPIGMA bioink was identified as no inflammation was observed for 4 weeks after implantation in Sprague Dawley rats. Compared with methacrylate-modified gelatin, the PPIGMA bioink significantly enhanced cartilage regeneration in vitro and in vivo, suggesting that it can be used in tissue engineering applications. In summary, the PPIGMA bioink can be potentially used for tissue engineering applications.
Collapse
Affiliation(s)
- Xin Chen
- College of Material Science and Engineering, Hunan University, Changsha 410082, China.
| | - Zheng Zhou
- College of Biology, Hunan University, Changsha 410082, China.
| | - Mengni Yang
- College of Material Science and Engineering, Hunan University, Changsha 410082, China.
| | - Shuai Zhu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China.
| | - Wenxiang Zhu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China.
| | - Jingjing Sun
- College of Biology, Hunan University, Changsha 410082, China.
| | - Mengyi Yu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China.
| | - Jiaqian He
- College of Biology, Hunan University, Changsha 410082, China.
| | - You Zuo
- College of Biology, Hunan University, Changsha 410082, China.
| | - Wenxin Wang
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Ning He
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Xiaoxiao Han
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Hairong Liu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|