1
|
Ben Akacha B, Madureira J, Cabo Verde S, Generalić Mekinić I, Kačániová M, Čmiková N, Kukula-Koch W, Koch W, Erdogan Orhan I, Ben Saad R, Mnif W, Garzoli S, Ben Hsouna A. Advances in cheese safety and quality: harnessing irradiation technologies for enhanced preservation. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:433-452. [PMID: 39917354 PMCID: PMC11794759 DOI: 10.1007/s13197-024-06190-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 02/09/2025]
Abstract
This manuscript provides a comprehensive overview of the use of gamma rays, electron beams, and X-rays to improve the safety and quality of cheese. It examines the sources, energy levels, penetration depths, and applications, focusing on the nutritional and safety benefits as well as potential health concerns. Microbial dynamics in cheese are discussed, showing how irradiation doses influence bacterial counts and cheese characteristics. Gamma rays are suitable for bulky cheeses due to their high penetration depth, while electron beams are ideal for surface treatments due to their limited penetration depth. X-rays offer a good balance between penetration depth and energy efficiency. Consumer perception and legal aspects are also addressed, with market acceptance and retail impact assessed. The review demonstrates that irradiation can reduce contamination, extend shelf life, and preserve sensory properties, making it a promising tool for cheese processing. Future research should explore the long-term effects on texture and flavour as well as the economic feasibility of large-scale production, helping the industry to meet the demand for nutritious dairy products.
Collapse
Affiliation(s)
- Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, 3018, 9 Sfax, Tunisia
| | - Joana Madureira
- Centro de Ciências E Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 Ao Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências E Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 Ao Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Ivana Generalić Mekinić
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Lisboa, Portugal
| | - Miroslava Kačániová
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boskovica 35, HR-21000 Split, Croatia
- Institute of Horticulture, Faculty of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Natália Čmiková
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boskovica 35, HR-21000 Split, Croatia
| | - Wirginia Kukula-Koch
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki str., 20-093 Lublin, Poland
| | - Wojciech Koch
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki str., 20-093 Lublin, Poland
| | - Ilkay Erdogan Orhan
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, 3018, 9 Sfax, Tunisia
| | - Wissem Mnif
- Department of Pharmacognosy, Faculty of Pharmacy, Lokman Hekim University, Ankara, 06510 Ankara, Türkiye
| | - Stefania Garzoli
- Department of Chemistry, College of Sciences at Bisha, University of Bisha, P.O. Box 199, 61922 Bisha, Saudi Arabia
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, 3018, 9 Sfax, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir, 5000 Tunisia
| |
Collapse
|
2
|
Ellouze I, Ben Akacha B, Mekinić IG, Ben Saad R, Kačániová M, Kluz MI, Mnif W, Garzoli S, Ben Hsouna A. Enhancing Antibacterial Efficacy: Synergistic Effects of Citrus aurantium Essential Oil Mixtures against Escherichia coli for Food Preservation. Foods 2024; 13:3093. [PMID: 39410132 PMCID: PMC11475270 DOI: 10.3390/foods13193093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Essential oils (EOs) from various medicinal and aromatic plants are known for their diverse biological activities, including their antimicrobial effects. Citrus aurantium EO is traditionally used for therapeutic benefits due to its high content of bioactive compounds. Therefore, this study focuses on its potential use as a food preservative by investigating the combined antibacterial properties of EOs from leaves (EO1), flowers (EO2), and small branches (EO3) of Citrus aurantium against six bacterial strains by the agar disk diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) methods. The chemical compositions of the EOs were analysed by gas chromatography-mass spectrometry (GC-MS) and revealed the presence of numerous compounds responsible for their antimicrobial properties. The MIC values for the EOs were 3.12 mg/mL, 4.23 mg/mL, and 1.89 mg/mL, for EO1, EO2 and EO3, respectively, while the MBC values were 12.5 mg/mL, 6.25 mg/mL, and 6.25 mg/mL, respectively. A simplex centroid design was created to analyse the effect of the individual and combined EOs against E. coli. The combined EOs showed enhanced antibacterial activity compared to the individual oils, suggesting a synergistic effect (e.g., trial 9 with an MIC of 0.21 mg/mL), allowing the use of lower EO concentrations and reducing potential negative effects on food flavour and aroma. Additionally, the practical application of investigated EOs (at concentrations twice the MIC) was investigated in raw chicken meat stored at 4 °C for 21 days. The EOs, individually and in combination, effectively extended the shelf life of the meat by inhibiting bacterial growth (total bacterial count of less than 1 × 104 CFU/g in the treated samples compared to 7 × 107 CFU/g in the control on day 21 of storage). The study underlines the potential of C. aurantium EOs as natural preservatives that represent a sustainable and effective alternative to synthetic chemicals in food preservation.
Collapse
Affiliation(s)
- Ines Ellouze
- Department of Vegetal Biotechnology, Higher Institute of Biotechnology of Beja, Jendouba University, Beja 9000, Tunisia;
- Functional and Bio-Resources Valorization Laboratory, Higher Institute of Biotechnology of Beja, Jendouba University, Beja 9000, Tunisia
| | - Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, B.P 1177, Sfax 3018, Tunisia; (B.B.A.); (R.B.S.); (A.B.H.)
| | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, 21000 Split, Croatia;
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, B.P 1177, Sfax 3018, Tunisia; (B.B.A.); (R.B.S.); (A.B.H.)
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku2, 94976 Nitra, Slovakia
- School of Medical and Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland;
| | - Maciej Ireneusz Kluz
- School of Medical and Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland;
| | - Wissem Mnif
- Department of Chemistry, College of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, B.P 1177, Sfax 3018, Tunisia; (B.B.A.); (R.B.S.); (A.B.H.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
3
|
Kačániová M, Čmiková N, Ban Z, Garzoli S, Elizondo-Luevano JH, Ben Hsouna A, Ben Saad R, Bianchi A, Venturi F, Kluz MI, Haščík P. Enhancing the Shelf Life of Sous-Vide Red Deer Meat with Piper nigrum Essential Oil: A Study on Antimicrobial Efficacy against Listeria monocytogenes. Molecules 2024; 29:4179. [PMID: 39275027 PMCID: PMC11396834 DOI: 10.3390/molecules29174179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
Using sous-vide technology in combination with essential oils offers the potential to extend the preservation of food items while preserving their original quality. This method aligns with the growing consumer demand for safer and healthier food production practices. This study aimed to assess the suitability of minimal processing of game meat and the effectiveness of vacuum packaging in combination with Piper nigrum essential oil (PNEO) treatment to preserve red deer meat samples inoculated with Listeria monocytogenes. Microbial analyses, including total viable count (TVC) for 48 h at 30 °C, coliform bacteria (CB) for 24 h at 37 °C, and L. monocytogenes count for 24 h at 37 °C, were conducted. The cooking temperature of the sous-vide was from 50 to 65 °C and the cooking time from 5 to 20 min. Additionally, the study monitored the representation of microorganism species identified through mass spectrometry. The microbiological quality of red deer meat processed using the sous-vide method was monitored over 14 days of storage at 4 °C. The results indicated that the TVC, CB, and L. monocytogenes counts decreased with the temperature and processing time of the sous-vide method. The lowest counts of individual microorganism groups were observed in samples treated with 1% PNEO. The analysis revealed that PNEO, in combination with the sous-vide method, effectively reduced L. monocytogenes counts and extended the shelf life of red deer meat. Kocuria salsicia, Pseudomonas taetrolens, and Pseudomonas fragi were the most frequently isolated microorganism species during the 14-day period of red deer meat storage prepared using the sous-vide method.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy
| | - Joel Horacio Elizondo-Luevano
- Faculty of Agronomy, Universidad Autónoma de Nuevo León (UANL), Av. Francisco Villa S/N, Col. Ex Hacienda el Canadá, General Escobedo, Nuevo León 66050, Mexico
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P "1177", Sfax 3018, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P "1177", Sfax 3018, Tunisia
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Maciej Ireneusz Kluz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland
| | - Peter Haščík
- Institute of Food Technology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
4
|
Kačániová M, Garzoli S, Ben Hsouna A, Ban Z, Elizondo-Luevano JH, Kluz MI, Ben Saad R, Haščík P, Čmiková N, Waskiewicz-Robak B, Kollár J, Bianchi A. Enhancing Deer Sous Vide Meat Shelf Life and Safety with Eugenia caryophyllus Essential Oil against Salmonella enterica. Foods 2024; 13:2512. [PMID: 39200440 PMCID: PMC11353597 DOI: 10.3390/foods13162512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/27/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Modern lifestyles have increased the focus on food stability and human health due to evolving industrial goals and scientific advancements. Pathogenic microorganisms significantly challenge food quality, with Salmonella enterica and other planktonic cells capable of forming biofilms that make them more resistant to broad-spectrum antibiotics. This research examined the chemical composition and antibacterial and antibiofilm properties of the essential oil from Eugenia caryophyllus (ECEO) derived from dried fruits. GC-MS analyses identified eugenol as the dominant component at 82.7%. Additionally, the study aimed to extend the shelf life of sous vide deer meat by applying a plant essential oil and inoculating it with S. enterica for seven days at 4 °C. The essential oil demonstrated strong antibacterial activity against S. enterica. The ECEO showed significant antibiofilm activity, as indicated by the MBIC crystal violet test results. Data from MALDI-TOF MS analysis revealed that the ECEO altered the protein profiles of bacteria on glass and stainless-steel surfaces. Furthermore, the ECEO was found to have a beneficial antibacterial effect on S. enterica. In vacuum-packed sous vide red deer meat samples, the anti-Salmonella activity of the ECEO was slightly higher than that of the control samples. These findings underscore the potential of the ECEO's antibacterial and antibiofilm properties in food preservation and extending the shelf life of meat.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia;
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland; (M.I.K.); (B.W.-R.)
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy;
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (R.B.S.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Zhaojun Ban
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou 310023, China;
| | - Joel Horacio Elizondo-Luevano
- Faculty of Agronomy, Universidad Autónoma de Nuevo León (UANL), Av. Francisco Villa S/N, Col. Ex Hacienda el Canadá, General Escobedo, Nuevo León 66050, Mexico;
| | - Maciej Ireneusz Kluz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland; (M.I.K.); (B.W.-R.)
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (R.B.S.)
| | - Peter Haščík
- Institute of Food Technology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia;
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia;
| | - Božena Waskiewicz-Robak
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland; (M.I.K.); (B.W.-R.)
| | - Ján Kollár
- Institute of Landscape Architecture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tulipánová 7, 94976 Nitra, Slovakia;
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| |
Collapse
|
5
|
Kačániová M, Vukovic NL, Čmiková N, Bianchi A, Garzoli S, Ben Saad R, Ben Hsouna A, Elizondo-Luévano JH, Said-Al Ahl HAH, Hikal WM, Vukic MD. Biological Activity and Phytochemical Characteristics of Star Anise ( Illicium verum) Essential Oil and Its Anti- Salmonella Activity on Sous Vide Pumpkin Model. Foods 2024; 13:1505. [PMID: 38790803 PMCID: PMC11121629 DOI: 10.3390/foods13101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Illicium verum, commonly known as star anise, represents one of the notable botanical species and is recognized for its rich reservoir of diverse bioactive compounds. Beyond its culinary application as a spice, this plant has been extensively utilized in traditional medicine. Given the contemporary emphasis on incorporating natural resources into food production, particularly essential oils, to enhance sensory attributes and extend shelf life, our study seeks to elucidate the chemical composition and evaluate the antibacterial (in vitro, in situ) and insecticidal properties of Illicium verum essential oil (IVEO). Also, microbiological analyses of pumpkin sous vide treated with IVEO after inoculation of Salmonella enterica were evaluated after 1 and 7 days of study. GC/MS analysis revealed a significantly high amount of (E)-anethole (88.4%) in the investigated EO. The disc diffusion method shows that the antibacterial activity of the IVEO ranged from 5.33 (Streptococcus constellatus) to 10.33 mm (Citrobacter freundii). The lowest minimal inhibition concentration was found against E. coli and the minimum biofilm inhibition concertation was found against S. enterica. In the vapor phase, the best antimicrobial activity was found against E. coli in the pears model and against S. sonei in the beetroot model. The application of the sous vide method in combination with IVEO application decreased the number of microbial counts and eliminated the growth of S. enterica. The most isolated microbiota identified from the sous vide pumpkin were Bacillus amyloliquefaciens, B. cereus, B. licheniformis, and Ralstonia picketii. Modifications to the protein composition of biofilm-forming bacteria S. enterica were suggested by the MALDI TOF MS instigations. The IVEO showed insecticidal potential against Harmonia axyridis. Thanks to the properties of IVEO, our results suggest it can be used in the food industry as a natural supplement to extend the shelf life of foods and as a natural insecticide.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (M.D.V.)
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland
| | - Nenad L. Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (M.D.V.)
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy;
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Joel Horacio Elizondo-Luévano
- Faculty of Agronomy, Universidad Autónoma de Nuevo León (UANL), Av. Francisco Villa S/N, Col. Ex Hacienda el Canadá, General Escobedo 66050, Nuevo León, Mexico;
| | - Hussein A. H. Said-Al Ahl
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St. Dokki, Giza 12622, Egypt;
| | - Wafaa M. Hikal
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Milena D. Vukic
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (M.D.V.)
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia;
| |
Collapse
|
6
|
Kačániová M, Čmiková N, Vukovic NL, Verešová A, Bianchi A, Garzoli S, Ben Saad R, Ben Hsouna A, Ban Z, Vukic MD. Citrus limon Essential Oil: Chemical Composition and Selected Biological Properties Focusing on the Antimicrobial (In Vitro, In Situ), Antibiofilm, Insecticidal Activity and Preservative Effect against Salmonella enterica Inoculated in Carrot. PLANTS (BASEL, SWITZERLAND) 2024; 13:524. [PMID: 38498554 PMCID: PMC10893099 DOI: 10.3390/plants13040524] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
New goals for industry and science have led to increased awareness of food safety and healthier living in the modern era. Here, one of the challenges in food quality assurance is the presence of pathogenic microorganisms. As planktonic cells can form biofilms and go into a sessile state, microorganisms are now more resistant to broad-spectrum antibiotics. Due to their proven antibacterial properties, essential oils represent a potential option to prevent food spoilage in the search for effective natural preservatives. In this study, the chemical profile of Citrus limon essential oil (CLEO) was evaluated. GC-MS analysis revealed that limonene (60.7%), β-pinene (12.6%), and γ-terpinene (10.3%) are common constituents of CLEO, which prompted further research on antibacterial and antibiofilm properties. Minimum inhibitory concentration (MIC) values showed that CLEO generally exhibits acceptable antibacterial properties. In addition, in situ antimicrobial research revealed that vapour-phase CLEO can arrest the growth of Candida and Y. enterocolitica species on specific food models, indicating the potential of CLEO as a preservative. The antibiofilm properties of CLEO were evaluated by MIC assays, crystal violet assays, and MALDI-TOF MS analysis against S. enterica biofilm. The results of the MIC and crystal violet assays showed that CLEO has strong antibiofilm activity. In addition, the data obtained by MALDI-TOF MS investigation showed that CLEO altered the protein profiles of the bacteria studied on glass and stainless-steel surfaces. Our study also found a positive antimicrobial effect of CLEO against S. enterica. The anti-Salmonella activity of CLEO in vacuum-packed sous vide carrot samples was slightly stronger than in controls. These results highlight the advantages of the antibacterial and antibiofilm properties of CLEO, suggesting potential applications in food preservation.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (A.V.); (M.D.V.)
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland
- INTI International University, Persiaran Perdana BBN Putra Nilai, Nilai 71800, Malaysia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (A.V.); (M.D.V.)
| | - Nenad L. Vukovic
- Department of Chemistry, University of Kragujevac, Faculty of Science, R. Domanovića 12, 34000 Kragujevac, Serbia;
| | - Andrea Verešová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (A.V.); (M.D.V.)
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Milena D. Vukic
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (A.V.); (M.D.V.)
- Department of Chemistry, University of Kragujevac, Faculty of Science, R. Domanovića 12, 34000 Kragujevac, Serbia;
| |
Collapse
|