1
|
Ping C, Liu Y, Bi J, Cai X, Li X, Qiao M. Identification of characteristic flavor quality of ceramic-pot sealed meat after reheating based on HS-GC-IMS, bionic sensory combined chemometrics. Food Chem X 2024; 23:101640. [PMID: 39105100 PMCID: PMC11298606 DOI: 10.1016/j.fochx.2024.101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
This study investigated the impacts of microwave reheating (MR), boil reheating (BR), and steam reheating (SR) on the flavor profile of Ceramic-Pot Sealed Meat (CPSM). Electronic nose and tongue revealed that the microwaving was superior in preserving the original olfactory and gustatory profiles of CPSM compared to the other methods. Headspace- Gas chromatography- ion mobility spectrometry (HS-GC-IMS) detected 48 compounds, encompassing 15 alcohols, 11 aldehydes, 9 ketones, 7 esters, 2 alkenes, and 2 others, 1 acid. Spectral and clustering analysis revealed a significant rise in the content of Warmed-over flavor compounds after boil reheating, culminating in pronounced flavor distortion and a decline in sensory scores. Relative odor activity value (ROAV) and chemometrics identified nine substances as the principal flavor compounds responsible to flavor distortion. In conclusion, all reheating methods induce changes in the original flavor characteristics profiles of CPSM. However, microwave reheating offers superior preservation of the flavor characteristics of CPSM.
Collapse
Affiliation(s)
- Chunyuan Ping
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yuanqi Liu
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Jicai Bi
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Xuemei Cai
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Xiang Li
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
- Culinary College, Sichuan Tourism University, Chengdu 610100, China
| | - Mingfeng Qiao
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| |
Collapse
|
2
|
Cai X, Zhu K, Li W, Peng Y, Yi Y, Qiao M, Fu Y. Characterization of flavor and taste profile of different radish ( Raphanus Sativus L.) varieties by headspace-gas chromatography-ion mobility spectrometry (GC/IMS) and E-nose/tongue. Food Chem X 2024; 22:101419. [PMID: 38756475 PMCID: PMC11096940 DOI: 10.1016/j.fochx.2024.101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
A comprehensive study of the overall flavor and taste profile of different radishes is lacking. This study systematically compared the volatile profile of six radish varieties using HS-GC-IMS and their correlation with the E-nose analysis. Organic acids and amino acids were quantified, and their association with the E-tongues analysis was explored. A total of 73 volatile compounds were identified, with diallyl sulfide and dimethyl disulfide being the primary sulfides responsible for the unpleasant flavor in radish. Compared to other varieties, cherry radishes boast a significantly higher concentration of allyl isothiocyanate, which likely contributes to their characteristic radish flavor. Moreover, oxalic acid was identified as the most abundant organic acid in radish, accounting for over 97% of its content, followed by malic acid and succinic acid. In conclusion, the distinct flavor and taste characteristics of different radish varieties partially explain their suitability for diverse culinary preferences.
Collapse
Affiliation(s)
- Xuemei Cai
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Kaixian Zhu
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Wanli Li
- Solid-state Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644007, China
| | - Yiqin Peng
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Yuwen Yi
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Mingfeng Qiao
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Yu Fu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
3
|
Qiao M, Luo S, Z. Z, Cai X, Zhao X, Jiang Y, Miao B. Quality Assessment of Loquat under Different Preservation Methods Based on Physicochemical Indicators, GC–MS and Intelligent Senses. HORTICULTURAE 2024; 10:499. [DOI: 10.3390/horticulturae10050499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
To explore the effects of different preservation methods on the quality of loquat after fresh-keeping treatment, various preservation techniques were employed. These included natural preservation (NP), vacuum freezing preservation (VFP), vacuum at room temperature preservation (VP) and freezing preservation (FP). The quality assessment involved analyzing the effects of these preservation methods using physicochemical indexes, a colorimeter, an electronic nose (E-nose), an electronic tongue (E-tongue) and gas chromatography–mass spectrometry (GC–MS). The results showed minor differences in loquat quality under different preservation methods, with sensory scores ranging from 55 to 78 and ΔE values ranging from 11.92 to 18.59. Significant variations were observed in moisture content (ranging from 53.20 g/100 g to 87.20 g/100 g), calorie content (ranging from 42.55 Kcal/100 g to 87.30 Kcal/100 g), adhesion (ranging from 0.92 to 1.84 mJ) and hardness (ranging from 2.97 to 4.19 N) (p < 0.05). Additionally, the free amino acid content varied from 22.47 mg/g to 65.42 mg/g. GC–MS analysis identified a total of 47 volatile flavor substances in varieties of loquats, including 13 aldehydes, 9 esters, 6 ketones, 2 acids, 3 alcohols, 2 phenols, 3 pyrazines, 1 furan and 8 other substances. The relative content of aldehydes was significantly higher than that of other chemicals. The VFP and FP samples exhibited higher aldehyde content compared to the NP and VP samples. Moreover, Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) revealed 18 marked compounds that could differentiate between 5 loquat species. Analysis using E-nose and E-tongue indicated significant changes in the olfactory and gustatory senses of loquats following preservation. The VFP samples demonstrated the most effective preservation of loquat quality with minimal impact. This study provides some theoretical guidance for the home preservation of loquats.
Collapse
Affiliation(s)
- Mingfeng Qiao
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Siyue Luo
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
- College of Food, Sichuan Tourism University, Chengdu 610100, China
| | - Zherenyongzhong Z.
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
- College of Food, Sichuan Tourism University, Chengdu 610100, China
| | - Xuemei Cai
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Xinxin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Yuqin Jiang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Baohe Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| |
Collapse
|