1
|
Rosenzweig Z, Garcia J, Thompson GL, Perez LJ. Inactivation of bacteria using synergistic hydrogen peroxide with split-dose nanosecond pulsed electric field exposures. PLoS One 2024; 19:e0311232. [PMID: 39556570 PMCID: PMC11573215 DOI: 10.1371/journal.pone.0311232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 11/20/2024] Open
Abstract
The use of pulsed electric fields (PEF) as a nonthermal technology for the decontamination of foods is of growing interest. This study aimed to enhance the inactivation of Escherichia coli, Listeria innocua, and Salmonella enterica in Gomori buffer using a combination of nsPEF and hydrogen peroxide (H2O2). Three sub-MIC concentrations (0.1, 0.3, and 0.5%) of H2O2 and various contact times ranging from 5-45 min were tested. PEF exposures as both single (1000 pulse) and split-dose (500+500 pulse) trains were delivered via square-wave, monopolar, 600 ns pulses at 21 kV/cm and 10 Hz. We demonstrate that >5 log CFU/mL reduction can be attained from combination PEF/H2O2 treatments with a 15 min contact time for E. coli (0.1%) and a 30 min contact time for L. innocua and S. enterica (0.5%), despite ineffective results from either individual treatment alone. A 5 log reduction in microbial population is generally the lowest acceptable level in consideration of food safety and represents inactivation of 99.999% of bacteria. Split-dose PEF exposures enhance lethality for several tested conditions, indicating greater susceptibility to PEF after oxidative damage has occurred.
Collapse
Affiliation(s)
- Zachary Rosenzweig
- Department of Chemical Engineering, Rowan University, Glassboro, New Jersey, United States of America
| | - Jerrick Garcia
- Department of Chemical Engineering, Rowan University, Glassboro, New Jersey, United States of America
| | - Gary L. Thompson
- WuXi AppTec, Philadelphia, Pennsylvania, United States of America
| | - Lark J. Perez
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey, United States of America
| |
Collapse
|
2
|
Lopes AR, Costa Silva DG, Rodrigues NR, Kemmerich Martins I, Paganotto Leandro L, Nunes MEM, Posser T, Franco J. Investigating the impact of Psidium guajava leaf hydroalcoholic extract in improving glutamatergic toxicity-induced oxidative stress in Danio rerio larvae. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:457-470. [PMID: 38576186 DOI: 10.1080/15287394.2024.2337366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Glutamate is one of the predominant excitatory neurotransmitters released from the central nervous system; however, at high concentrations, this substance may induce excitotoxicity. This phenomenon is involved in numerous neuropathologies. At present, clinically available pharmacotherapeutic agents to counteract glutamatergic excitotoxicity are not completely effective; therefore, research to develop novel compounds is necessary. In this study, the main objective was to determine the pharmacotherapeutic potential of the hydroalcoholic extract of Psidium guajava (PG) in a model of oxidative stress-induced by exposure to glutamate utilizing Danio rerio larvae (zebrafish) as a model. Data showed that treatment with glutamate produced a significant increase in oxidative stress, chromatin damage, apoptosis, and locomotor dysfunction. All these effects were attenuated by pre-treatment with the classical antioxidant N-acetylcysteine (NAC). Treatment with PG inhibited oxidative stress responsible for cellular damage induced by glutamate. However, exposure to PG failed to prevent glutamate-initiated locomotor damage. Our findings suggest that under conditions of oxidative stress, PG can be considered as a promising candidate for treatment of glutamatergic excitotoxicity and consequent neurodegenerative diseases.
Collapse
Affiliation(s)
- Andressa Rubim Lopes
- Centro Interdisciplinar de Pesquisa em Biotecnologia - CIPBiotec, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas - Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Dennis Guilherme Costa Silva
- Programa de Pós-Graduação em Ciências Fisiológicas - Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Nathane Rosa Rodrigues
- Grupo de Pesquisa em Bioquímica e Toxicologia Compostos Bioativos - GBToxBio, Universidade Federal do Pampa - UNIPAMPA, Uruguaiana, Rio Grande do Sul, Brazil
| | - Illana Kemmerich Martins
- Centro Interdisciplinar de Pesquisa em Biotecnologia - CIPBiotec, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
| | - Luana Paganotto Leandro
- Departamento de Química, Programa de Pós-Graduação em Bioquímica Toxicológica - PPGBTox, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul, Brazil
| | - Mauro Eugênio Medina Nunes
- Centro Interdisciplinar de Pesquisa em Biotecnologia - CIPBiotec, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
| | - Thais Posser
- Centro Interdisciplinar de Pesquisa em Biotecnologia - CIPBiotec, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
| | - Jeferson Franco
- Centro Interdisciplinar de Pesquisa em Biotecnologia - CIPBiotec, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
| |
Collapse
|