1
|
Parada T, Pardo P, Saurina J, Sentellas S. Characterization of dark chocolates based on polyphenolic profiles and antioxidant activity. J Food Sci 2024; 89:8857-8867. [PMID: 39495576 DOI: 10.1111/1750-3841.17451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 11/06/2024]
Abstract
Dark chocolates were characterized according to geographical origin, cocoa variety, and cocoa content using the methylxanthine and polyphenolic composition and antioxidant activity as the data. The main study objective was to uncover sample patterns and identify possible markers of quality, variety, or origin to deal with authentication or fraud detection issues. In the study, a set of 26 dark chocolates from different varieties (e.g., Criollo, Forastero, and Trinitario) harvested in Africa, America, and Asia was analyzed. The optimized sample treatment consisted of defatting the chocolate (1 g of sample with 5 mL of cyclohexane for 15 min, three times) and then extracting the analytes by sonication with methanol/water 60:40 (v:v) for 15 min. The filtered extracts were analyzed by reversed-phase high-performance liquid chromatography with UV and spectrophotometric methods (Folin-Ciocalteu, ferric reducing antioxidant power, and aluminum methods) to determine individual phenolics and overall indexes of antioxidant and flavonoid content. Results from this chocolate set indicated that American samples are richer than African counterparts in alkaloids and phenolics (e.g., 1.7 vs. 1.1 mg g-1 caffeine and 14.5 vs. 12.5 mg g-1 total flavanols, respectively). Regarding cocoa varieties, Criollo cocoa was richer in bioactive compounds and antioxidant capacity (e.g., 16, 15, and 12 mg g-1 total flavanols for Criollo, Forastero, and Trinitario, respectively). These results indicate that the analytes resulted in potential descriptors of varietal or geographical attributes.
Collapse
Affiliation(s)
- Tamara Parada
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Pablo Pardo
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Barcelona, Spain
- Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Santa Coloma de Gramenet, Spain
| | - Sonia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Barcelona, Spain
- Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Santa Coloma de Gramenet, Spain
- Departament de Recerca i Universitats, Serra Húnter Fellow, Generalitat de Catalunya, Barcelona, Spain
| |
Collapse
|
2
|
Meng F, Du W, Zhu Y, Du X, Song C, Chen X, Fang X, Cao Q, Ma D, Wang Y, Zhang C. Composition and Bioactivity of Chlorogenic Acids in Vegetable and Conventional Sweet Potato Vine Tips. Foods 2023; 12:3910. [PMID: 37959029 PMCID: PMC10649122 DOI: 10.3390/foods12213910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Sweet potato vine tips are abundant in chlorogenic acid (CGA). In this study, CGA was extracted from vegetable and conventional sweet potato vine tips using ethanol, followed by subsequent purification of the extract through a series of sequential steps. Over 4 g of the purified product was obtained from 100 g of sweet potato vine tip powder, producing more than 85% of purified CGA. The LC-MS analysis of all samples indicated that 4-CQA was the predominant isomer in both sweet potato cultivars. Significant variations of p-coumaroyl quinic acids, feruloyl quinic acids, dicaffeoyl quinic acids, and tricaffeoyl quinic acid were identified, whereas the mono-caffeoyl quinic acids did not vary when the two sweet potato varieties were compared. Compared to conventional sweet potatoes, vegetable sweet potatoes exhibit a high negative correlation between 4-CQA and 5-pCoQA, while showing a high positive correlation between 3,5-CQA and 3-pCoQA. A series of principal component analyses (PCA) using CGA isomers enables a clear differentiation between vine tips derived from vegetable and conventional sweet potatoes. The model of linear discriminant analysis, based on the characteristic CGA, achieved a 100% accuracy rate in distinguishing between vegetable and conventional sweet potatoes. The high purity of sweet potato CGA (SCGA) exhibited potent anti-breast cancer activity. The results demonstrated that SCGA significantly suppressed the clonogenicity of MB231 and MCF7 cells, and impeded the migratory, invasive, and lung metastatic potential of MB231 cells.
Collapse
Affiliation(s)
- Fantong Meng
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (F.M.); (W.D.); (Y.Z.); (X.D.); (C.S.); (X.C.); (X.F.); (Q.C.); (D.M.); (Y.W.)
| | - Wantong Du
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (F.M.); (W.D.); (Y.Z.); (X.D.); (C.S.); (X.C.); (X.F.); (Q.C.); (D.M.); (Y.W.)
| | - Yaxing Zhu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (F.M.); (W.D.); (Y.Z.); (X.D.); (C.S.); (X.C.); (X.F.); (Q.C.); (D.M.); (Y.W.)
| | - Ximeng Du
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (F.M.); (W.D.); (Y.Z.); (X.D.); (C.S.); (X.C.); (X.F.); (Q.C.); (D.M.); (Y.W.)
| | - Chengchuang Song
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (F.M.); (W.D.); (Y.Z.); (X.D.); (C.S.); (X.C.); (X.F.); (Q.C.); (D.M.); (Y.W.)
| | - Xi Chen
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (F.M.); (W.D.); (Y.Z.); (X.D.); (C.S.); (X.C.); (X.F.); (Q.C.); (D.M.); (Y.W.)
| | - Xingtang Fang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (F.M.); (W.D.); (Y.Z.); (X.D.); (C.S.); (X.C.); (X.F.); (Q.C.); (D.M.); (Y.W.)
| | - Qinghe Cao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (F.M.); (W.D.); (Y.Z.); (X.D.); (C.S.); (X.C.); (X.F.); (Q.C.); (D.M.); (Y.W.)
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou 221004, China
| | - Daifu Ma
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (F.M.); (W.D.); (Y.Z.); (X.D.); (C.S.); (X.C.); (X.F.); (Q.C.); (D.M.); (Y.W.)
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou 221004, China
| | - Yanhong Wang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (F.M.); (W.D.); (Y.Z.); (X.D.); (C.S.); (X.C.); (X.F.); (Q.C.); (D.M.); (Y.W.)
| | - Chunlei Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (F.M.); (W.D.); (Y.Z.); (X.D.); (C.S.); (X.C.); (X.F.); (Q.C.); (D.M.); (Y.W.)
| |
Collapse
|
3
|
Hassoun A, Jagtap S, Garcia-Garcia G, Trollman H, Pateiro M, Lorenzo JM, Trif M, Rusu AV, Aadil RM, Šimat V, Cropotova J, Câmara JS. Food quality 4.0: From traditional approaches to digitalized automated analysis. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
HPLC-ESI-HRMS and chemometric analysis of carobs polyphenols – Technological and geographical parameters affecting their phenolic composition. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Kalogiouri NP, Samanidou VF. Liquid chromatographic methods coupled to chemometrics: a short review to present the key workflow for the investigation of wine phenolic composition as it is affected by environmental factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59150-59164. [PMID: 32577971 DOI: 10.1007/s11356-020-09681-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
The guarantee of wine authenticity arises great concern because of its nutritional and economic importance. Phenolic fingerprints have been used as a source of chemical information for various authentication issues, including botanical and geographical origin, as well as vintage age. The local environment affects wine production and especially its phenolic metabolites. Integrated analytical methodologies combined with chemometrics can be applied in wine fingerprinting studies for the determination and establishment of phenolic markers that contain comprehensive and standardized information about the wine profile and how it can be affected by various environmental factors. This review summarizes all the recent trends in the generation of chemometric models that have been developed for treating chromatographic data and have been used for the investigation of critical wine authenticity issues, revealing phenolic markers responsible for the botanical, geographical, and vintage age classification of wines. Overall, the current review suggests that chromatographic methodologies are promising and powerful techniques that can be used for the accurate determination of phenolic compounds in difficult matrices like wine, highlighting the advantages of the applications of supervised chemometric tools over unsupervised for the construction of prediction models that have been successfully used for the classification based on their territorial and botanical origin.
Collapse
Affiliation(s)
- Natasa P Kalogiouri
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Victoria F Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
6
|
Oenological Processes and Product Qualities in the Elaboration of Sparkling Wines Determine the Biogenic Amine Content. FERMENTATION 2021. [DOI: 10.3390/fermentation7030144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The biogenic amine (BA) content in wines is dependent on the fermentation processes and other oenological practices, as well as on grape quality. These compounds can participate in different cellular functions in humans; however, the intake of high amounts can provoke some toxicological effects. For that reason, controlling the evolution of biogenic amines in wine production processes is of extreme importance. This work aims to assess the occurrence of biogenic amines in sparkling wines and related samples, including musts, base wines, stabilized wines, and three-month and seven-month aged sparkling wines obtained from Pinot Noir and Xarel lo grape varieties. The determination of BA content relies on liquid chromatography with fluorescence detection (HPLC–FLD) with precolumn derivatization of analytes with dansyl chloride. The analysis has shown that putrescine is the most abundant amine in these types of samples. Ethanolamine, tyramine, spermine, and histamine concentrations are also remarkable. Principal component analysis has been applied to try to extract featured information concerning overall patterns dealing with wine production steps and qualities. Interesting conclusions have been drawn on BA formation depending on different factors. BA concentrations are quite low in must but rise, especially after the first alcoholic fermentation. Moreover, BA levels are much lower in the range of products elaborated with grapes of the best qualities while they significantly increase when using grapes of lower qualities. The results obtained pointed out the analytical potential of using BAs to control the quality of wine and its production processes, thus providing valuable information for both wineries and consumers.
Collapse
|
7
|
Abstract
This paper is focused on the assessment of a multi-sensor approach to improve the overall characterization of sparkling wines (cava wines). Multi-sensor, low-level data fusion can provide more comprehensive and more accurate vision of results compared with the study of simpler data sets from individual techniques. Data from different instrumental platforms were combined in an enriched matrix, integrating information from spectroscopic (UV/Vis and FTIR), chromatographic, and other techniques. Sparkling wines belonging to different classes, which differed in the grape varieties, coupages, and wine-making processes, were analyzed to determine organic acids (e.g., tartaric, lactic, malic, and acetic acids), pH, total acidity, polyphenols, total antioxidant capacity, ethanol, or reducing sugars. The resulting compositional values were treated chemometrically for a more efficient recovery of the underlaying information. In this regard, exploratory methods such as principal component analysis showed that phenolic compounds were dependent on varietal and blending issues while organic acids were more affected by fermentation features. The analysis of the multi-sensor data set provided a more comprehensive description of cavas according to grape classes, blends, and vinification processes. Hierarchical Cluster Analysis (HCA) allowed specific groups of samples to be distinguished, featuring malolactic fermentation and the chardonnay and red grape classes. Partial Least Squares-Discriminant Analysis (PLS-DA) also classified samples according to the type of grape varieties and fermentations. Bar charts and complementary statistic test were performed to better define the differences among the studied samples based on the most significant markers of each cava wine type. As a conclusion, catechin, gallic, gentisic, caftaric, caffeic, malic, and lactic acids were the most remarkable descriptors that contributed to their discrimination based on varietal, blending, and oenological factors.
Collapse
|
8
|
Merkytė V, Longo E, Windisch G, Boselli E. Phenolic Compounds as Markers of Wine Quality and Authenticity. Foods 2020; 9:E1785. [PMID: 33271877 PMCID: PMC7760515 DOI: 10.3390/foods9121785] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 12/15/2022] Open
Abstract
Targeted and untargeted determinations are being currently applied to different classes of natural phenolics to develop an integrated approach aimed at ensuring compliance to regulatory prescriptions related to specific quality parameters of wine production. The regulations are particularly severe for wine and include various aspects of the viticulture practices and winemaking techniques. Nevertheless, the use of phenolic profiles for quality control is still fragmented and incomplete, even if they are a promising tool for quality evaluation. Only a few methods have been already validated and widely applied, and an integrated approach is in fact still missing because of the complex dependence of the chemical profile of wine on many viticultural and enological factors, which have not been clarified yet. For example, there is a lack of studies about the phenolic composition in relation to the wine authenticity of white and especially rosé wines. This review is a bibliographic account on the approaches based on phenolic species that have been developed for the evaluation of wine quality and frauds, from the grape varieties (of V. vinifera and non vinifera), to the geographical origin, the vintage year, the winemaking process, and wine aging. Future perspectives on the role of phenolic compounds in different wine quality aspects, which should be still exploited, are also outlined.
Collapse
Affiliation(s)
- Vakarė Merkytė
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bozen-Bolzano, Italy; (V.M.); (G.W.); (E.B.)
- Oenolab, NOI Techpark South Tyrol, Via A. Volta 13B, 39100 Bozen-Bolzano, Italy
| | - Edoardo Longo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bozen-Bolzano, Italy; (V.M.); (G.W.); (E.B.)
- Oenolab, NOI Techpark South Tyrol, Via A. Volta 13B, 39100 Bozen-Bolzano, Italy
| | - Giulia Windisch
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bozen-Bolzano, Italy; (V.M.); (G.W.); (E.B.)
- Oenolab, NOI Techpark South Tyrol, Via A. Volta 13B, 39100 Bozen-Bolzano, Italy
| | - Emanuele Boselli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bozen-Bolzano, Italy; (V.M.); (G.W.); (E.B.)
- Oenolab, NOI Techpark South Tyrol, Via A. Volta 13B, 39100 Bozen-Bolzano, Italy
| |
Collapse
|
9
|
Núñez O, Lucci P. Application of Liquid Chromatography in Food Analysis. Foods 2020; 9:foods9091277. [PMID: 32932895 PMCID: PMC7555050 DOI: 10.3390/foods9091277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 11/28/2022] Open
Affiliation(s)
- Oscar Núñez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), Santa Coloma de Gramenet, E08921 Barcelona, Spain
- Serra Húnter Fellow, Generalitat de Catalunya, Rambla de Catalunya 19-21, E08007 Barcelona, Spain
- Correspondence: (O.N.); (P.L.)
| | - Paolo Lucci
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
- Correspondence: (O.N.); (P.L.)
| |
Collapse
|
10
|
Liquid Chromatographic Approach for the Discrimination and Classification of Cava Samples Based on the Phenolic Composition Using Chemometric Methods. BEVERAGES 2020. [DOI: 10.3390/beverages6030054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Phenolic profiles obtained by liquid chromatography with UV/vis detection were here exploited to classify cava samples from the protected designation of origin Cava. Wine samples belonging to various classes which differed in grape varieties, blends and fermentation processes were studied based on profiling and fingerprinting approaches. Hence, concentrations of relevant phenolic acids and chromatograms registered at 310 nm were preliminarily examined by Principal Component Analysis (PCA) to extract information on cava classes. It was found that various hydroxybenzoic and hydroxycinnamic acids such as gallic, gentisic, caffeic or caftaric acids were up- or down-expressed depending on the wine varieties. Additionally, Partial Least Squares Discriminant Analysis (PLS-DA) was applied to classify the cava samples according to varietal origins and blends. The classification models were established using well-known wines as the calibration standards. Subsequently, models were applied to assign unknown samples to their corresponding classes. Excellent classification rates were obtained thus proving the potentiality of the proposed approach for characterization and authentication purposes.
Collapse
|
11
|
Izquierdo-Llopart A, Carretero A, Saurina J. Organic Acid Profiling by Liquid Chromatography for the Characterization of Base Vines and Sparkling Wines. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01808-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Characterization of Turmeric and Curry Samples by Liquid Chromatography with Spectroscopic Detection Based on Polyphenolic and Curcuminoid Contents. SEPARATIONS 2020. [DOI: 10.3390/separations7020023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This paper deals with the characterization of turmeric and related products using the compositional fingerprints of curcuminoids (e.g., curcumin, demethoxycurcumin and bisdemethoxycurcumin) and other phenolic compounds (e.g., hydroxybenzoic and hydroxycinnamic acids and flavonoids) as the source of analytical information. Under this approach, the quantitative determination of analytes becomes unnecessary and even data from unknown components can be advantageously exploited for sample exploration and authentication. The methodology relied on sample extraction with hydro-organic solvents to recover the components of interest and further analysis of the corresponding extracts by liquid chromatography with diode array detection (HPLC-DAD). Extraction conditions were optimized focusing on the independent recovery of curcuminoids and polyphenols. Two different HPLC methods under reversed-phase mode were used to generate the chromatographic fingerprints at 420 and 280 nm for the specific monitoring of curcuminoids and polyphenols, respectively. Both extraction and separation steps were optimized under experimental design approaches to achieve the richest compositional fingerprints in terms of variety of components. The resulting data was subsequently treated chemometrically by principal component analysis (PCA) and related classification methods to achieve a better overall description of samples. Polyphenolic fingerprints were appropriate to discriminate among turmeric and mixed spices, while curcuminoid fingerprints could be useful to distinguish turmeric varieties.
Collapse
|
13
|
Sartor S, Burin VM, Ferreira-Lima NE, Caliari V, Bordignon-Luiz MT. Polyphenolic Profiling, Browning, and Glutathione Content of Sparkling Wines Produced with Nontraditional Grape Varieties: Indicator of Quality During the Biological Aging. J Food Sci 2019; 84:3546-3554. [PMID: 31710090 DOI: 10.1111/1750-3841.14849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/30/2019] [Accepted: 09/28/2019] [Indexed: 11/29/2022]
Abstract
Sparkling wines were elaborated with the nontraditional varieties Villenave, Niagara, Manzoni, and Goethe, and monitored in relation to the changes in phenolic composition, browning index, and glutathione content during 18 months of biological aging (sur lies). Important changes in the phenolic profile, browning index, and glutathione content were observed in the sparkling wines during the over-lees aging period. The major phenolic compound in the sparkling wines was tyrosol, followed by caffeic, trans-caftaric, and gallic acids, catechin and epicatechin. The biological aging led to an increase in the individual phenolic compounds, especially caffeic, gallic, and ellagic acids, and an increase in the browning index was also observed during the aging period. Caffeic acid was significantly correlated with browning and aging period in all sparkling wines, which indicates that this compound can be useful as a quality marker to monitoring the biological aging profile of white sparkling wines. The results obtained indicate that the aging period (sur lie) had an important influence on the changes in the unique phenolic profile of the sparkling wines elaborated with nontraditional varieties. PRACTICAL APPLICATION: In sparkling wines production, the secondary fermentation occurring in the sealed bottle during the vinification contributes greatly to their quality and sensory complexity. The Vitis labrusca and hybrid grapes varieties represent most of the grapes cultivated in Brazil being employed in the elaboration of juices and wines. These varieties present a great oenological potential and have not been explored yet regarding to the production of white sparkling wines. The use of these nontraditional grape varieties cultivated in South Brazil may be a viable alternative in the production of white sparkling wines with biological aging potential and particular bioactive properties.
Collapse
Affiliation(s)
- Saionara Sartor
- Dept. of Food Science and Technology, Federal Univ. of Santa Catarina, Admar Gonzaga Rd. 1346, Florianópolis, Santa Catarina, 88034-001, Brazil
| | - Vívian Maria Burin
- Dept. of Food Science and Technology, Federal Univ. of Santa Catarina, Admar Gonzaga Rd. 1346, Florianópolis, Santa Catarina, 88034-001, Brazil
| | - Nayla E Ferreira-Lima
- Dept. of Food Science and Technology, Federal Univ. of Santa Catarina, Admar Gonzaga Rd. 1346, Florianópolis, Santa Catarina, 88034-001, Brazil
| | - Vinícius Caliari
- Agricultural Research and Rural Extension Company of Santa Catarina, João Zardo Rd. 1660, Videira, Santa Catarina, 89560-000, Brazil
| | - Marilde T Bordignon-Luiz
- Dept. of Food Science and Technology, Federal Univ. of Santa Catarina, Admar Gonzaga Rd. 1346, Florianópolis, Santa Catarina, 88034-001, Brazil
| |
Collapse
|