1
|
Zhang Y, Dong W, Zhao M, Zhang J, Li L, Ma Y, Meng X, Wang Y. Identification and Analysis of Phenolic Compounds in Vaccinium uliginosum L. and Its Lipid-Lowering Activity In Vitro. Foods 2024; 13:3438. [PMID: 39517222 PMCID: PMC11545093 DOI: 10.3390/foods13213438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Vaccinium uliginosum L. (VU), rich in polyphenols, is an important wild berry resource primarily distributed in extremely cold regions. However, the detailed composition of Vaccinium uliginosum L. polyphenols (VUPs) has not been reported, which limits the development and utilization of VU. In this study, VU-free polyphenols (VUFPs) and VU-bound polyphenols (VUBPs) were, respectively, extracted using an ultrasonic, complex enzyme and alkali extraction method; the compositions were identified using ultra-performance liquid chromatography-electrospray ionization mass spectrometry, and lipid-lowering activity in vitro was evaluated. The results showed that 885 polyphenols and 47 anthocyanins were detected in the VUFPs and VUBPs, and 30 anthocyanin monomers were firstly detected in VU. Compared with the model group, the accumulation of lipid droplets and the total cholesterol and triglyceride contents in the high-concentration VUP group reduced by 36.95%, 65.82%, and 62.43%, respectively, and liver damage was also alleviated. It was also found that VUP can regulate the level of Asialoglycoprotein receptor 1, a new target for lipid lowering. In summary, this study provides a detailed report on VUP for the first time, confirming that VUP has lipid-lowering potential in vitro. These findings suggest new strategies and theoretical support for the development and utilization of VU, especially in the field of functional foods.
Collapse
Affiliation(s)
- Ying Zhang
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
| | - Manjun Zhao
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| | - Jiyue Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
| | - Li Li
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| | - Yan Ma
- Center of Experiment Teaching, Shenyang Normal University, Shenyang 110034, China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| |
Collapse
|
2
|
Fu K, Zhao J, Zhong L, Xu H, Yu X, Bi X, Huang C. Dual therapy with phospholipase and metalloproteinase inhibitors from Sinonatrix annularis alleviated acute kidney and liver injury caused by multiple snake venoms. Biomed Pharmacother 2024; 177:116967. [PMID: 38908206 DOI: 10.1016/j.biopha.2024.116967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
Snakebite envenomation often induces acute kidney injury (AKI) and acute liver injury (ALI), leading to augmented injuries and poor rehabilitation. Phospholipase A2 (PLA2) and metalloproteinase (SVMP) present in venom are responsible for the envenomation-associated events. In this study, mice envenomed with Deinagkistrodon acutus, Naja atra, or Agkistrodon halys pallas venom exhibited typical AKI and ALI symptoms, including significantly increased plasma levels of myoglobin, free hemoglobin, uric acid, aspartate aminotransferase, and alanine aminotransferase and upregulated expression of kidney NGAL and KIM-1. These effects were significantly inhibited when the mice were pretreated with natural inhibitors of PLA2 and SVMP isolated from Sinonatrix annularis (SaPLIγ and SaMPI). The inhibitors protected the physiological structural integrity of the renal tubules and glomeruli, alleviating inflammatory infiltration and diffuse hemorrhage in the liver. Furthermore, the dual therapy alleviated oxidative stress and apoptosis in the kidneys and liver by mitigating mitochondrial damage, thereby effectively reducing the lethal effect of snake venom in the inhibitor-treated mouse model. This study showed that dual therapy with inhibitors of metalloproteinase and phospholipase can effectively prevent ALI and AKI caused by snake bites. Our findings suggest that intrinsic inhibitors present in snakes are prospective therapeutic agents for multi-organ injuries caused by snake envenoming.
Collapse
Affiliation(s)
- Kepu Fu
- School of Basic Medical Sciences, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jianqi Zhao
- School of Basic Medical Sciences, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Lipeng Zhong
- Clinical Laboratory Center, The First Affiliated Hospital, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330209, China
| | - Haiyan Xu
- Blood Transfusion Department, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - Xinhui Yu
- School of Basic Medical Sciences, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaowen Bi
- School of Basic Medical Sciences, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chunhong Huang
- School of Basic Medical Sciences, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
3
|
Lu M, Zhao ZT, Xin Y, Chen G, Yang F. Dietary supplementation of water extract of Eucommia ulmoides bark improved caecal microbiota and parameters of health in white-feathered broilers. J Anim Physiol Anim Nutr (Berl) 2024; 108:816-838. [PMID: 38324000 DOI: 10.1111/jpn.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/08/2024]
Abstract
Eucommia ulmoides has been used as a food and medicine homologue for a long time in China. We hypothesize that Eucommia ulmoides achieves its health-promoting effects via altering gut microbiota. Here, we investigated the effects of water extract of Eucommia ulmoides bark on caecal microbiota and growth performance, antioxidant activity, and immunity in white-feathered broilers treated for 42 days. A total of 108 one-day-old Cobb white-feathered broilers were randomly assigned to three treatment groups: control diet, 0.75% Eucommia ulmoides diet (EU Ⅰ) and 1.5% Eucommia ulmoides diet (EU Ⅱ). The results showed that EU Ⅱ treatment improved average body weight (ABW), thigh muscle quality and total length of intestines, and decreased the serum total triglycerides and total cholesterol (TC) (p < 0.05). Eucommia ulmoides supplementation increased serum superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant activities and content of immunoglobulins, and reduced levels of malondialdehyde and tumour necrosis factor-α (TNF-α) (p < 0.05). Moreover, the supplementation increased the diversity of caecal microbiota and reduced the pathogenic genera Escherichia Shigella and Helicobacter. The genera Ochrobactrum, Odoribater, Klebsiella, Enterobacter, Georgenia and Bifidobacterium were positively associated with the ABW, total intestinal length, serum levels of GSH-Px, SOD and immunoglobulins (p < 0.001) and negatively associated with the TC and TNF-α (p < 0.01), suggesting an association of the changes of gut microbiota and improvement of broiler health. Meanwhile, Eucommia ulmoides supplementation enriched the Kyoto Encyclopedia of Genes and Genomes pathway of exocrine secretion from the pancreas, circadian entrainment and inhibited lipopolysaccharide biosynthesis. In conclusion, Eucommia ulmoides water extract can be used as a feed additive to improve poultry industry production.
Collapse
Affiliation(s)
- Min Lu
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhong-Tao Zhao
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Ye Xin
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Guoxun Chen
- Food Nutrition and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fang Yang
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
4
|
Gong Y, Qiu B, Zheng H, Li X, Wang Y, Wu M, Yan M, Gong Y. Unacylated ghrelin attenuates acute liver injury and hyperlipidemia via its anti-inflammatory and anti-oxidative activities. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:49-56. [PMID: 38164484 PMCID: PMC10722475 DOI: 10.22038/ijbms.2023.70831.15388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/16/2023] [Indexed: 01/03/2024]
Abstract
Objectives Liver injury and hyperlipidemia are major issues that have drawn more and more attention in recent years. The present study aimed to investigate the effects of unacylated ghrelin (UAG) on acute liver injury and hyperlipidemia in mice. Materials and Methods UAG was injected intraperitoneally once a day for three days. Three hours after the last administration, acute liver injury was induced by intraperitoneal injection of carbon tetrachloride (CCl4), and acute hyperlipidemia was induced by intraperitoneal injection of poloxamer 407, respectively. Twenty-four hours later, samples were collected for serum biochemistry analysis, histopathological examination, and Western blotting. Results In acute liver injury mice, UAG significantly decreased liver index, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), reduced malondialdehyde (MDA) concentration and increased superoxide dismutase(SOD) in liver tissue. NF-kappa B (NF-κB) protein expression in the liver was down-regulated. In acute hyperlipidemia mice, UAG significantly decreased serum total cholesterol (TC), triglyceride (TG), ALT, and AST, as well as hepatic TG levels. Meanwhile, hepatic MDA decreased and SOD increased significantly. Moreover, UAG improved the pathological damage in the liver induced by CCl4 and poloxamer 407, respectively. Conclusion Intraperitoneal injection of UAG exhibited hepatoprotective and lipid-lowering effects on acute liver injury and hyperlipidemia, which is attributed to its anti-inflammatory and anti-oxidant activities.
Collapse
Affiliation(s)
- Yating Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Beibei Qiu
- Department of Pathology, Feicheng Hospital Affiliated to Shandong First Medical University, Qingdao, China
| | - Haotian Zheng
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiangbo Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yifan Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Mengran Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Meixing Yan
- Department of Pharmacy, Qingdao Women and Children’s Hospital, Qingdao, China
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Wang Y, Qi JJ, Yin YJ, Jiang H, Zhang JB, Liang S, Yuan B. Ferulic Acid Enhances Oocyte Maturation and the Subsequent Development of Bovine Oocytes. Int J Mol Sci 2023; 24:14804. [PMID: 37834252 PMCID: PMC10573426 DOI: 10.3390/ijms241914804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Improving the quality of oocytes matured in vitro is integral to enhancing the efficacy of in vitro embryo production. Oxidative stress is one of the primary causes of quality decline in oocytes matured in vitro. In this study, ferulic acid (FA), a natural antioxidant found in plant cell walls, was investigated to evaluate its impact on bovine oocyte maturation and subsequent embryonic development. Bovine cumulus-oocyte complexes (COCs) were treated with different concentrations of FA (0, 2.5, 5, 10, 20 μM) during in vitro maturation (IVM). Compared to the control group, supplementation with 5 μM FA significantly enhanced the maturation rates of bovine oocytes and the expansion of the cumulus cells area, as well as the subsequent cleavage and blastocyst formation rates after in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT). Furthermore, FA supplementation was observed to effectively decrease the levels of ROS in bovine oocytes and improve their mitochondrial function. Our experiments demonstrate that FA can maintain the levels of antioxidants (GSH, SOD, CAT) in oocytes, thereby alleviating the oxidative stress induced by H2O2. RT-qPCR results revealed that, after FA treatment, the relative mRNA expression levels of genes related to oocyte maturation (GDF-9 and BMP-15), cumulus cell expansion (HAS2, PTX3, CX37, and CX43), and embryo pluripotency (OCT4, SOX2, and CDX2) were significantly increased. In conclusion, these findings demonstrate that FA supplementation during bovine oocyte IVM can enhance oocyte quality and the developmental potential of subsequent embryos.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.W.); (J.-J.Q.); (Y.-J.Y.); (H.J.); (J.-B.Z.)
| | - Bao Yuan
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.W.); (J.-J.Q.); (Y.-J.Y.); (H.J.); (J.-B.Z.)
| |
Collapse
|
6
|
Liu M, Liu M, Bai L, Shang W, Ren R, Zhao Z, Sun Y. Establishing a Berry Sensory Evaluation Model Based on Machine Learning. Foods 2023; 12:3502. [PMID: 37761211 PMCID: PMC10528871 DOI: 10.3390/foods12183502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, people's quality of life has increased, and the requirements for fruits have also become higher; blueberries are particularly popular because of their rich nutrients. In the blueberry industry chain, sensory evaluation is an important link in determining the quality of blueberries. Therefore, to make a more objective scientific evaluation of blueberry quality and reduce the influence of human factors, on the basis of traditional sensory evaluation methods, machine learning is introduced to establish a support vector regression prediction model optimized by the particle swarm algorithm. Ten physical and chemical flavor indices of blueberries (such as catalase, flavonoids, and soluble solids) were used as input data, and sensory evaluation scores were used as output data. Three different predictive models were applied and compared: a particle swarm optimization support vector machine, a convolutional neural network, and a long short-term memory network model. To ensure reliability, the experiments with each of the three models were repeated 20 times, and the mean of each index was calculated. The experimental results showed that the root mean square error and mean absolute error of the particle swarm optimization support vector machine were 0.45 and 0.40, respectively; these values were lower than those of the convolutional neural network (0.96 and 0.78, respectively) and the long short-term memory network (1.22 and 0.97, respectively). Hence, these results highlighted the superiority of the proposed model when sample data are limited.
Collapse
Affiliation(s)
- Minghao Liu
- School of Artifical Intelligence, Beijing Technology and Business University, Beijing 100048, China; (M.L.); (M.L.); (Z.Z.)
| | - Minhua Liu
- School of Artifical Intelligence, Beijing Technology and Business University, Beijing 100048, China; (M.L.); (M.L.); (Z.Z.)
| | - Lin Bai
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (L.B.); (W.S.); (R.R.)
| | - Wei Shang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (L.B.); (W.S.); (R.R.)
| | - Runhan Ren
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (L.B.); (W.S.); (R.R.)
| | - Zhiyao Zhao
- School of Artifical Intelligence, Beijing Technology and Business University, Beijing 100048, China; (M.L.); (M.L.); (Z.Z.)
| | - Ying Sun
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (L.B.); (W.S.); (R.R.)
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
7
|
Wang B, Wang Y, Chen Y, Sun X, Xu J, Zhu J, Zhang Y. Red-Fleshed Apple Flavonoids Extract Alleviates Male Reproductive Injury Caused by Busulfan in Mice. Nutrients 2023; 15:3288. [PMID: 37571225 PMCID: PMC10420934 DOI: 10.3390/nu15153288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
In this research, we analyzed the protective effects of red-fleshed apple flavonoid extracts (RAFEs) on male reproductive injury induced by busulfan, using both in vitro and in vivo models. In the cell-based experiments, RAFEs significantly improved cell viability and proliferation rates compared to control groups. Similarly, in vivo testing with male mice showed that RAFEs and whole apple flavonoid extracts (WAFEs) enhanced various biochemical and liver function-related indicators in the testes; however, RAFEs demonstrated superior efficacy in mitigating testicular damage. Through immunohistochemistry, qRT-PCR, and Western blotting, we found that RAFEs notably enhanced the expression of spermatogenesis-related genes. Moreover, RAFEs increased the expression of oxidative stress- and apoptosis-related genes, thereby effectively reducing oxidative damage in the testes. These findings highlight the potential of RAFEs as natural agents for the prevention and treatment of male reproductive injury, paving the way for future research and potential therapeutic applications.
Collapse
Affiliation(s)
- Bin Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
- China Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanbo Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
| | - Yizhou Chen
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
| | - Xiaohong Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (X.S.); (J.X.)
| | - Jihua Xu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (X.S.); (J.X.)
| | - Jun Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
- China Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257300, China
| |
Collapse
|
8
|
Fylymonenko VP, Galuzinska LV, Kravchenko GB, Kravchenko VM, Bryukhanova ТО, Мaloshtan LМ, Lytkin DV. Effectiveness of food concentrate phenolic compounds of apples in experimental membrane pathologies. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Apple fruits are an available source of phenolic compounds that exhibit a wide range of biological activities (antioxidant, anti-inflammatory, membrane stabilizing, etc.). The antioxidant properties of food concentrate phenolic compounds of apples (Concentrate) were studied in vitro in models of spontaneous and ascorbate induced lipid peroxidation (LPO) in rat liver homogenate, and acute carbon tetrachloromethane hepatitis was chosen as in vivo model in rats. Membrane stabilizing activity was evaluated by the degree of hemolysis in blood samples from the tail vein. The effect of Concentrate on vascular permeability was studied considering the time of animal skin papules staining at the site of injection of phlogogenic substances. Hepatoprotective activity in the model of acute carbon tetrachloride hepatitis was assessed by changes in prooxidant-antioxidant status in liver homogenate and liver enzymes activity in serum. Significant antioxidant effect of Concentrate was fixed in models of spontaneous and ascorbate induced LPO (TBA reactants’ content was 3.12 times and 2.25 times lower than control for spontaneous LPO and ascorbate induced LPO, respectively) and under tetrachloride hepatitis (Concentrate antioxidant activity was 47.8%). The membrane-protective activity of the studied Concentrate was also high and reached 50.1%. Also, Concentrate demonstrated capillary-strengthening properties, reducing the permeability of the vascular wall, which was caused by three different chlorogens, most notably by zymosan (Concentrate significantly delayed the stain utilization from the bloodstream by 2.14 times compared to control). Newly developed concentrate showed complex hepatoprotective activity, improving the indices of antioxidant-prooxidant status and activity of liver cytolysis enzymes in rats with tetrachloromethane hepatitis. The transparent corrective effects of Concentrate are the result of synergism and additivity of its multiple components and indicate the prospects of its further research in order to develop medications for the prophylaxis and treatment of diseases associated with membrane damage.
Collapse
|
9
|
Dimitrellou D, Solomakou N, Kokkinomagoulos E, Kandylis P. Yogurts Supplemented with Juices from Grapes and Berries. Foods 2020; 9:foods9091158. [PMID: 32825783 PMCID: PMC7555734 DOI: 10.3390/foods9091158] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Nowadays, there is growing interest for the development of enriched dairy products with phenolic compounds derived from edible sources, mainly due to their safety and potential health benefits. Following that trend, in the present study, fruit juices (blueberry, aronia, and grape) were supplemented into yogurt as functional ingredients. The main physicochemical characteristics (pH, reducing sugars, acidity, color, and syneresis), total phenolic content, antioxidant activity, and viability of yogurt starters were monitored during production and storage. The use of juices had no significant effect on milk acidification rate and on the main physicochemical characteristics of yogurts, while resulted in increased red color. Total phenolic content increased from 30 to 33% (grape and aronia) and up to 49% (blueberry), while similar results were observed in antioxidant activity. Similar values of syneresis were presented in all yogurts, probably due to exopolysaccharide producing starter culture. Streptococcus thermophilus retained high viable counts during storage especially in yogurts with fruit juices (>108 cells g−1) revealing a possible prebiotic effect of juices. The results obtained from this study show that fruit juices (aronia, blueberry, and grape) have potential to be used in yogurt production in order to optimize the benefits of probiotic products with high phenolic compound intake.
Collapse
|
10
|
Antioxidant Capacity-Related Preventive Effects of Shoumei (Slightly Fermented Camellia sinensis) Polyphenols against Hepatic Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9329356. [PMID: 32922655 PMCID: PMC7453255 DOI: 10.1155/2020/9329356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/05/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Shoumei is a kind of white tea (slightly fermented Camellia sinensis) that is rich in polyphenols. In this study, polyphenols were extracted from Shoumei. High-performance liquid chromatography (HPLC) showed that the polyphenols included mainly gallic acid, catechin, hyperoside, and sulfuretin. In an in vitro experiment, H2O2 was used to induce oxidative damage in human normal hepatic L-02 cells. In an animal experiment, CCl4 was used to induce liver injury. The in vitro results showed that Shoumei polyphenols inhibited oxidative damage in normal hepatic L-02 cells, and the in vivo results showed that the polyphenols effectively reduced liver index values in mice with liver injury. The polyphenols also decreased aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), triglyceride (TG), total cholesterol (TC), blood urea nitrogen (BUN), nitric oxide (NO), malondialdehyde (MDA), interleukin 6 (IL-6), interleukin 12 (IL-12), tumour necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ) levels and increased albumin (ALB), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) levels in the serum of mice with liver injury. Furthermore, pathological observation showed that the Shoumei polyphenols reduced CCl4-induced hepatocyte damage. qRT-PCR and Western blotting showed that the polyphenols upregulated the mRNA and protein expression of neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), manganese- (Mn-) SOD, copper/zinc- (Cu/Zn-) SOD, CAT, and inhibitor of nuclear factor kappa B (NF-κB) alpha (IκB-α) and downregulated the expression of inducible nitric oxide synthase (iNOS) and NF-κB p65. The Shoumei polyphenols had a preventive effect against CCl4-induced mouse liver injury equivalent to that of silymarin. The four polyphenols identified as the key substances responsible for this effect mediated the effect through their antioxidant capacity. These results suggest that Shoumei polyphenols are high-quality natural products with liver-protective effects.
Collapse
|
11
|
Amelioration of age-related alterations in rat liver: Effects of curcumin C3 complex, Astragalus membranaceus and blueberry. Exp Gerontol 2020; 137:110982. [DOI: 10.1016/j.exger.2020.110982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/04/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
|
12
|
EPA/DHA Concentrate by Urea Complexation Decreases Hyperinsulinemia and Increases Plin5 in the Liver of Mice Fed a High-Fat Diet. Molecules 2020; 25:molecules25143289. [PMID: 32698439 PMCID: PMC7397222 DOI: 10.3390/molecules25143289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/27/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022] Open
Abstract
Dietary intake of eicosapentaenoic/docosahexaenoic acid (EPA/DHA) reduces insulin resistance and hepatic manifestations through the regulation of metabolism in the liver. Obese mice present insulin resistance and lipid accumulation in intracellular lipid droplets (LDs). LD-associated proteins perilipin (Plin) have an essential role in both adipogenesis and lipolysis; Plin5 regulates lipolysis and thus contributes to fat oxidation. The purpose of this study was to compare the effects of deodorized refined salmon oil (DSO) and its polyunsaturated fatty acids concentrate (CPUFA) containing EPA and DHA, obtained by complexing with urea, on obesity-induced metabolic alteration. CPUFA maximum content was determined using the Box-Behnken experimental design based on Surface Response Methodology. The optimized CPUFA was administered to high-fat diet (HFD)-fed mice (200 mg/kg/day of EPA + DHA) for 8 weeks. No significant differences (p > 0.05) in cholesterol, glycemia, LDs or transaminase content were found. Fasting insulin and hepatic Plin5 protein level increased in the group supplemented with the EPA + DHA optimized product (38.35 g/100 g total fatty acids) compared to obese mice without fish oil supplementation. The results suggest that processing salmon oil by urea concentration can generate an EPA+DHA dose useful to prevent the increase of fasting insulin and the decrease of Plin5 in the liver of insulin-resistant mice.
Collapse
|
13
|
Karimirad R, Khosravinia H, Parizadian Kavan B. Effect of different feed physical forms (pellet, crumble, mash) on the performance and liver health in broiler chicken with and without carbon tetrachloride challenge. JOURNAL OF ANIMAL AND FEED SCIENCES 2020. [DOI: 10.22358/jafs/118818/2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Yang M, Sun F, Zhou Y, He M, Yao P, Peng Y, Luo F, Liu F. Preventive effect of lemon seed flavonoids on carbon tetrachloride-induced liver injury in mice. RSC Adv 2020; 10:12800-12809. [PMID: 35492116 PMCID: PMC9051252 DOI: 10.1039/d0ra01415j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to determine the preventive effect of lemon seed flavonoids (LSF) on carbon tetrachloride-induced liver injury in mice. Liver injury was induced by injection with 2 mL kg-1 of carbon tetrachloride after administration of LSF by gavage. Liver index, serological parameters, and expression intensities of related mRNA and protein in the liver tissue were observed. The results indicated that LSF reduced liver weight and liver index, downregulated serum levels of AST, ALT, ALP, TG, TC, BUN, NO, and MDA, and upregulated levels of ALB, SOD, CAT, and GSH-Px in the mice with liver injury. It also downregulated serum cytokines, such as IL-6, IL-12, TNF-α, and IFN-γ in these mice. qPCR and western blot confirmed that LSF upregulated mRNA and protein expression of Mn-SOD, Cu/Zn-SOD, CAT, GSH-Px, and IκB-α, and downregulated expression of NF-κB-p65, iNOS, COX-2, TNF-α, IL-1β, and IL-6 in the liver tissue of mice with liver injury. The preventive effect on carbon tetrachloride-induced liver injury was attributed to (-)-epigallocatechin, caffeic acid, (-)-epicatechin, vitexin, quercetin, and hesperidin, which were active substances that were detected in LSF by HPLC. Moreover, the effect of LSF is similar to that of silymarin, but the synergistic effect of the five active substances working in concert acted to produce a more robust liver-protecting effect.
Collapse
Affiliation(s)
- Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Yue Zhou
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Mei He
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Pu Yao
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Yuan Peng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Fei Luo
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Fu Liu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| |
Collapse
|
15
|
Pino-de la Fuente F, Nocetti D, Sacristán C, Ruiz P, Guerrero J, Jorquera G, Uribe E, Bucarey JL, Espinosa A, Puente L. Physalis peruviana L. Pulp Prevents Liver Inflammation and Insulin Resistance in Skeletal Muscles of Diet-Induced Obese Mice. Nutrients 2020; 12:nu12030700. [PMID: 32151028 PMCID: PMC7146126 DOI: 10.3390/nu12030700] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/25/2022] Open
Abstract
A chronic high-fat diet (HFD) produces obesity, leading to pathological consequences in the liver and skeletal muscle. The fat in the liver leads to accumulation of a large number of intrahepatic lipid droplets (LD), which are susceptible to oxidation. Obesity also affects skeletal muscle, increasing LD and producing insulin signaling impairment. Physalis peruviana L. (PP) (Solanaceae) is rich in peruvioses and has high antioxidant activity. We assessed the ability of PP to enhance insulin-dependent glucose uptake in skeletal muscle and the capacity to prevent both inflammation and lipoperoxidation in the liver of diet-induced obese mice. Male C57BL/6J mice were divided into groups and fed for eight weeks: control diet (C; 10% fat, 20% protein, 70% carbohydrates); C + PP (300 mg/kg/day); HFD (60% fat, 20% protein, 20% carbohydrates); and HFD + PP. Results suggest that PP reduces the intracellular lipoperoxidation level and the size of LD in both isolated hepatocytes and skeletal muscle fibers. PP also promotes insulin-dependent skeletal muscle glucose uptake. In conclusion, daily consumption of 300 mg/kg of fresh pulp of PP could be a novel strategy to prevent the hepatic lipoperoxidation and insulin resistance induced by obesity.
Collapse
Affiliation(s)
- Francisco Pino-de la Fuente
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (F.P.-d.l.F.); (C.S.); (P.R.); (E.U.); (A.E.)
| | - Diego Nocetti
- Programa de Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco 4811230, Chile;
- Departamento de Tecnología Médica, Universidad de Tarapacá, Arica 1010069, Chile
| | - Camila Sacristán
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (F.P.-d.l.F.); (C.S.); (P.R.); (E.U.); (A.E.)
| | - Paulina Ruiz
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (F.P.-d.l.F.); (C.S.); (P.R.); (E.U.); (A.E.)
| | - Julia Guerrero
- Programa de Fisiología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
- Departamento de Medicina Interna, Hospital Clínico—Universidad de Chile, Santiago 8380456, Chile
| | - Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2391415, Chile;
| | - Ernesto Uribe
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (F.P.-d.l.F.); (C.S.); (P.R.); (E.U.); (A.E.)
| | - José Luis Bucarey
- Escuela de Medicina, Campus San Felipe, Universidad de Valparaíso, San Felipe 2340000, Chile;
| | - Alejandra Espinosa
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (F.P.-d.l.F.); (C.S.); (P.R.); (E.U.); (A.E.)
- Escuela de Medicina, Campus San Felipe, Universidad de Valparaíso, San Felipe 2340000, Chile;
| | - Luis Puente
- Departamento de Ciencias de los Alimentos, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
- Correspondence: ; Tel.: +56-(2)2978-1680
| |
Collapse
|
16
|
Zhang J, Lu DY, Yuan Y, Chen J, Yi S, Chen B, Zhao X. Liubao Insect tea polyphenols prevent HCl/ethanol induced gastric damage through its antioxidant ability in mice. RSC Adv 2020; 10:4984-4995. [PMID: 35498330 PMCID: PMC9049073 DOI: 10.1039/c9ra09641h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/24/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to study the preventive effects of polyphenols extracted from Liubao Insect tea on gastric injury. The content of Liubao Insect tea polyphenols (LITP) was 72.36% by ion precipitation extraction method. HCl/ethanol-induced gastric injury in mice led to increased gastric juice volume and decreased pH. LITP increased the gastric juice pH value and reduced the gastric juice volume at slightly lower quantities than ranitidine. Visual observation of gastric tissue showed that LITP could effectively reduce the area of gastric injury, and higher concentrations of LITP had a greater effect. Pathological observation also confirmed that LITP can reduce the cell damage and inflammatory effects, and play a role in preventing gastric injury. Serum cytokine assays showed that LITP could reduce the levels of IL-6 (interleukin 6), TNF-α (tumor necrosis factor alpha) and IFN-γ (interferon gamma) induced by gastric injury, and the effects of higher concentration of LITP were similar to those of ranitidine. The results showed that LITP could increase SOD (superoxide dismutase) and GSH (glutathione) levels; decrease MDA (malondialdehyde) and MPO (myeloperoxidase) levels; up-regulate the expression of Cu/Zn-SOD (cuprozinc-superoxide dismutase), Mn-SOD (manganese superoxide dismutase), CAT (catalase), nNOS (neuronal nitric oxide synthase), eNOS (endothelial nitric oxide synthase); and down-regulate the expression of iNOS (inducible nitric oxide synthase), COX-2 (cyclooxygenase-2), TNF-α, and IL-1β (interleukin-1 beta) in mice with gastric injury, thus inhibiting gastric injury. We demonstrate that LITP is an active substance which could prevent gastric injury in experimental animals. With the increase of LITP concentration, its effects on preventing gastric injury were stronger and similar to those of ranitidine. The aim of this study was to study the preventive effects of polyphenols extracted from Liubao Insect tea on gastric injury.![]()
Collapse
Affiliation(s)
- Jing Zhang
- Environment and Quality Inspection College
- Chongqing Chemical Industry Vocational College
- Chongqing 401228
- China
- Chongqing Collaborative Innovation Center for Functional Food
| | - De-Yun Lu
- Department of Gastroenterology
- Chengdu First People's Hospital
- Chengdu 610041
- China
| | - Ying Yuan
- Environment and Quality Inspection College
- Chongqing Chemical Industry Vocational College
- Chongqing 401228
- China
| | - Jingxia Chen
- Environment and Quality Inspection College
- Chongqing Chemical Industry Vocational College
- Chongqing 401228
- China
| | - Sha Yi
- Environment and Quality Inspection College
- Chongqing Chemical Industry Vocational College
- Chongqing 401228
- China
| | - Benchou Chen
- Environment and Quality Inspection College
- Chongqing Chemical Industry Vocational College
- Chongqing 401228
- China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food
- Chongqing University of Education
- Chongqing 400067
- China
| |
Collapse
|
17
|
Isolation and Identification of Lactobacillus plantarum HFY05 from Natural Fermented Yak Yogurt and Its Effect on Alcoholic Liver Injury in Mice. Microorganisms 2019; 7:microorganisms7110530. [PMID: 31694208 PMCID: PMC6920879 DOI: 10.3390/microorganisms7110530] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Yak yogurt is a type of naturally fermented dairy product prepared by herdsmen in the Qinghai-Tibet Plateau, which is rich in microorganisms. In this study, a strain of Lactobacillus plantarum was isolated and identified from yak yogurt in Hongyuan, Sichuan Province and named Lactobacillus plantarum HFY05 (LP-HFY05). LP-HFY05 was compared with a common commercial strain of Lactobacillus delbrueckii subsp. bulgaricus (LDSB). LP-HFY05 showed better anti-artificial gastric acid and bile salt effects than LDSB in in vitro experiments, indicating its potential as a probiotic. In animal experiments, long-term alcohol gavage induced alcoholic liver injury. LP-HFY05 effectively reduced the liver index of mice with liver injury, downregulated the levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, triglyceride, total cholesterol, blood urea nitrogen, nitric oxide, and MDA and upregulated the levels of albumin, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase in the serum of liver-injured mice. LP-HFY05 also reduced the levels of interleukin (IL)-6, IL-12, tumor necrosis factor-alpha, and interferon-gamma in the serum of liver-injured mice. The pathological observations showed that LP-HFY05 reduced the damage to liver cells caused by alcohol. Quantitative polymerase chain reaction and Western blot assays further showed that LP-HFY05 upregulated neuronal nitric oxide synthase, endothelial nitric oxide synthase, manganese-SOD, cuprozinc-SOD, CAT, and inhibitor of κB-α mRNA and protein expression and downregulated the expression of nuclear factor-κB-p65 and inducible nitric oxide synthase in the livers of liver-injured mice. A fecal analysis revealed that LP-HFY05 regulated the microbial content in the intestinal tract of mice with liver injury, increased the content of beneficial bacteria, including Bacteroides, Bifidobacterium, and Lactobacillus and reduced the content of harmful bacteria, including Firmicutes, Actinobacteria, Proteobacteria, and Enterobacteriaceae, thus, regulating intestinal microorganisms to protect against liver injury. The effect of LP-HFY05 on liver-injured mice was better than that of LDSB, and the effect was similar to that of silymarin. LP-HFY05 is a high-quality microbial strain with a liver protective effect on experimental mice with alcoholic liver injury.
Collapse
|
18
|
White Peony (Fermented Camellia sinensis) Polyphenols Help Prevent Alcoholic Liver Injury via Antioxidation. Antioxidants (Basel) 2019; 8:antiox8110524. [PMID: 31683564 PMCID: PMC6912415 DOI: 10.3390/antiox8110524] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
White peony is a type of white tea (Camellia sinensis) rich in polyphenols. In this study, polyphenols were extracted from white peony. In vitro experiments showed that white peony polyphenols (WPPs) possess strong free radical scavenging capabilities toward 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Long-term alcohol gavage was used to induce alcoholic liver injury in mice, and relevant indices of liver injury were examined. WPPs effectively reduced the liver indices of mice with liver injury. The serum levels of aspartate aminotransferase (ATS), alanine aminotransferase (ALT), alkaline phosphatase (ALP), triglycerides (TG), total cholesterol (TC), blood urea nitrogen (BUN), nitric oxide (NO), and malondialdehyde (MDA) were downregulated, while those of albumin (ALB), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were upregulated. WPPs also reduced the serum levels of interluekin-6 (IL-6), interluekin-12 (IL-12), tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ) in mice with liver injury. Pathology results showed that WPPs reduced alcohol-induced liver cell damage. Quantitative polymerase chain reaction (qPCR) and western blot results revealed that WPPs upregulated the mRNA and protein expressions of neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), manganese superoxide dismutase (Mn-SOD), cupro–zinc superoxide dismutase (Cu/Zn-SOD), and CAT and downregulated iNOS expression in the liver of mice with liver injury. WPPs protected against alcoholic liver injury, and this effect was equivalent to that of silymarin. High-performance liquid chromatography revealed that WPPs mainly contained the polyphenols gallic acid, catechinic acid, and hyperoside, which are critical for exerting preventive effects against alcoholic liver injury. Thus, WPPs are high-quality natural products with liver protective effects.
Collapse
|