1
|
Liu K, Dong H, Li X, Hu C, Cui F, Li S, Zhang X, Du Y, Yang P, Ji W, Sui W, Meng J. L-Arabinose Alleviates Functional Constipation in Mice by Regulating Gut Microbiota and Metabolites. Foods 2025; 14:900. [PMID: 40077603 PMCID: PMC11899279 DOI: 10.3390/foods14050900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Functional constipation ranks among the most common disorders impacting human health, which is manifested by difficulty in defecation and a complex etiology. L-Arabinose, a pentose found naturally in fruit rinds and cereal husks, has been reported to regulate glycolipid metabolism, improve glucose homeostasis, and exhibit anti-inflammatory effects. However, the effect and precise mechanism of L-Arabinose on functional constipation remain unclear. In this study, the effect of L-Arabinose in alleviating functional constipation induced by diphenoxylate was evaluated. The model group consisted of functional constipation mice that did not receive any intervention. The positive drug group was treated with 2.0 g/kg lactulose, while the intervention group was given 0.5 g/kg, 0.75 g/kg, 1.0 g/kg, and 2.0 g/kg L-Arabinose, respectively. The data suggested that 20 days of L-Arabinose intervention could shorten the first black stool defecation time, increase fecal water content, and enhance the rate of small intestinal propulsion in mice with functional constipation induced by diphenoxylate. Additionally, L-Arabinose reversed the protein expression of functional constipation-related intestinal factors in the colon, characterized by a decrease in the expression of water channel proteins AQP3 and AQP4, as well as an increase in the expression of tight-junction proteins ZO-1, Claudin-1 and Occludin. Furthermore, L-Arabinose modulated the levels of hormones (MTL, Gas) and neurotransmitters (5-HT, VIP) related to the digestive systems of mice with constipation, resulting in elevated levels of 5-HT, MTL, and Gas and decreasing levels of VIP. Histopathological analysis also revealed that L-Arabinose intervention improved the intestinal inflammatory response. Furthermore, 16S rRNA sequencing and metabolomics of the intestinal microbiota demonstrated that L-Arabinose treatment improved both the intestinal microbiota composition and the metabolite levels. This study suggests that L-Arabinose can serve as a potential functional ingredient to promote intestinal health, enhance gastrointestinal motility and barrier function, regulate osmotic pressure, restore neurotransmitter levels, and effectively relieve functional constipation.
Collapse
Affiliation(s)
- Ke Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (K.L.); (H.D.); (X.L.); (F.C.); (S.L.); (X.Z.); (Y.D.); (P.Y.); (W.S.)
| | - Huixuan Dong
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (K.L.); (H.D.); (X.L.); (F.C.); (S.L.); (X.Z.); (Y.D.); (P.Y.); (W.S.)
| | - Xinran Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (K.L.); (H.D.); (X.L.); (F.C.); (S.L.); (X.Z.); (Y.D.); (P.Y.); (W.S.)
| | - Chaoqun Hu
- Healtang Biotech Co., Ltd., Zhangqiu District, Jinan 250204, China; (C.H.); (W.J.)
| | - Fengya Cui
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (K.L.); (H.D.); (X.L.); (F.C.); (S.L.); (X.Z.); (Y.D.); (P.Y.); (W.S.)
| | - Shiji Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (K.L.); (H.D.); (X.L.); (F.C.); (S.L.); (X.Z.); (Y.D.); (P.Y.); (W.S.)
| | - Xiaolin Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (K.L.); (H.D.); (X.L.); (F.C.); (S.L.); (X.Z.); (Y.D.); (P.Y.); (W.S.)
| | - Yushan Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (K.L.); (H.D.); (X.L.); (F.C.); (S.L.); (X.Z.); (Y.D.); (P.Y.); (W.S.)
| | - Penghui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (K.L.); (H.D.); (X.L.); (F.C.); (S.L.); (X.Z.); (Y.D.); (P.Y.); (W.S.)
| | - Wenna Ji
- Healtang Biotech Co., Ltd., Zhangqiu District, Jinan 250204, China; (C.H.); (W.J.)
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (K.L.); (H.D.); (X.L.); (F.C.); (S.L.); (X.Z.); (Y.D.); (P.Y.); (W.S.)
- Jinan Fruit Research Institute, All-China Federation of Supply & Marketing Co-Operatives, Jinan 250014, China
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (K.L.); (H.D.); (X.L.); (F.C.); (S.L.); (X.Z.); (Y.D.); (P.Y.); (W.S.)
| |
Collapse
|
2
|
Tan F, Kong CS. Inhibitory Effect of Lactiplantibacillus plantarun HFY11 on Compound Diphenoxylate-Induced Constipation in Mice. Biomolecules 2025; 15:358. [PMID: 40149894 PMCID: PMC11940172 DOI: 10.3390/biom15030358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Lactiplantibacillus plantarun HFY11 (LP-HFY11) is a newly discovered microbial strain. This study was the first to investigate the preventive effect of LP-HFY11 on compound diphenoxylate induced constipation in mice by measuring intestinal contents, serum, and small intestinal tissue indexes. In mice suffering from constipation, LP-HFY11 could prevent the reduction in fecal weight, particle count, and water content. The constipated mice that ingested a high LP-HFY11 dose (LP-HFY11H) expelled the first black stool faster than the model group and the drug lactulose-treated group, but they were slower than the normal group. Furthermore, the small intestine in the LP-HFY11H group had a greater propulsion rate of activated charcoal than that in the model and lactulose groups, but the propulsion rate was still lower than that in the normal group. According to hematoxylin-eosin (H&E) staining, LP-HFY11H was more effective than lactulose at reducing intestinal villi breaking and constipation-induced harm to the small intestine. Simultaneously, compared with the model group, the LP-HFY11H group had markedly increased serum levels of motilin (MTL), endothelin-1 (ET-1), vasoactive intestinal peptide (VIP), and acetylcholinesterase (AchE). Transient receptor potential vanilloid 1 (TRPV1) expression was only higher than in the normal group, but the mRNA expression of c-Kit, stem cell factor (SCF), and glial cell line-derived neurotrophic factor (GDNF) was all higher in the small intestine in the LP-HFY11H group than in the model and lactulose groups, according to the results of quantitative polymerase chain reaction (qPCR) experiments. Analysis of microbial mRNA in the small intestinal contents of the constipated mice further validated the capacity of LP-HFY11 to decrease the abundance of Firmicutes and increase the abundance of Bacteroidetes, Bifidobacteria, and Lactobacillus. This revealed that LP-HFY11, which produced better results than the drug lactulose, can control the gut microbiota of constipated mice and successfully cure constipation. LP-HFY11 has the potential to be used as a probiotic in the treatment of constipation. It has good application prospects in the food industry and biopharma.
Collapse
Affiliation(s)
- Fang Tan
- Department of Bioscience, Silla University, Busan 46958, Republic of Korea;
| | - Chang-Suk Kong
- Department of Bioscience, Silla University, Busan 46958, Republic of Korea;
- Department of Food Science and Nutrition, Silla University, Busan 46958, Republic of Korea
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Republic of Korea
| |
Collapse
|
3
|
Liang S, He Z, Liang Z, Wang K, Du B, Guo R, Li P. Prunus persica (L.) Batsch blossom soluble dietary fiber synergia polyphenol improving loperamide-induced constipation in mice via regulating stem cell factor/C-kit, NF-κB signaling pathway and gut microbiota. Food Res Int 2024; 192:114761. [PMID: 39147543 DOI: 10.1016/j.foodres.2024.114761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
This study aimed to investigate the ameliorating effects of peach blossom soluble dietary fiber (PBSDF) and polyphenol (PBP) combinations on loperamide (Lop)-induced constipation in mice, together with the possible mechanism of action. The results demonstrated that the combined use of PBSDF and PBP could synergistically accelerate the gastrointestinal transit rate and gastric emptying rate, shorten first red fecal defecation time, accelerate the frequency of defecation, regulate the abnormal secretion of gastrointestinal neurotransmitters and pro-inflammatory cytokines, and down-regulate the expressions of AQP3 and AQP8. Western blotting and RT-qPCR analysis confirmed that PBSDF + PBP up-regulated the protein and mRNA expressions of SCF and C-kit in SCF/C-kit signaling pathway, and down-regulated pro-inflammatory mediator expressions in NF-κB signaling pathway. 16S rRNA sequencing showed that the diversity of gut microbiota and the relative abundance of specific strains, including Akkermansia, Bacteroides, Ruminococcus, Lachnospiraceae_NK4A136_group, and Turicibacter, rehabilitated after PBSDF + PBP intervention. These findings suggested that the combination of a certain dose of PBSDF and PBP had a synergistic effect on attenuating Lop-induced constipation, and the synergistic mechanism in improving constipation might associated with the regulating NF-κB and SCF/C-kit signaling pathway, and modulating the specific gut strains on constipation-related systemic types. The present study provided a novel strategy via dietary fiber and polyphenol interactions for the treatment of constipation.
Collapse
Affiliation(s)
- Shan Liang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhipeng He
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Ziping Liang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kun Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Rongxiang Guo
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Cheng S, Li B, Ding Y, Hou B, Hung W, He J, Jiang Y, Zhang Y, Man C. The probiotic fermented milk of Lacticaseibacillus paracasei JY062 and Lactobacillus gasseri JM1 alleviates constipation via improving gastrointestinal motility and gut microbiota. J Dairy Sci 2024; 107:1857-1876. [PMID: 37923200 DOI: 10.3168/jds.2023-24154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Constipation is directly related to the intestinal microenvironment, in which the promotion of gastrointestinal (GI) motility and improvement of gut microbiota distribution are important for alleviating symptoms. Herein, after the intervention of probiotic fermented milk (FMMIX) containing Lacticaseibacillus paracasei JY062 and Lactobacillus gasseri JM1 for 14 d in Kunming mice with loperamide-induced constipation, the results indicated that FMMIX significantly increased the secretion of serum motilin, gastrin and 5-hydroxytryptamine, as well as decreased the secretion of peptide YY, vasoactive intestinal peptide, and nitric oxide in mice. As determined by immunohistochemical analysis, FMMIX promoted an augmentation in the quantity of Cajal interstitial cells. In addition, the mRNA and protein expression of c-kit and stem cell factor (SCF) were upregulated to facilitate intestinal motility. High-throughput sequencing and gas chromatography techniques revealed that FMMIX led to an increase in the relative abundance of beneficial bacteria (Lactobacillus, Oscillospira, Ruminococcus, Coprococcus, and Akkermansia), reduced the presence of harmful bacteria (Prevotella), and resulted in elevated levels of short-chain fatty acids (SCFA) with a superior improvement compared with unfermented milk. Untargeted metabolomics revealed significant upregulation of functional metabolites such as l-pipecolinic acid, dl-phenylalanine, and naringenin in FMMIX, presumably playing a potential role in constipation relief. Overall, our results showed that FMMIX had the potential to alleviate constipation symptoms in mice by improving the secretion of serum GI regulatory peptides and neurotransmitters, increasing the expression of c-kit and SCF proteins, and modulating the gut microbiota structure and SCFA levels, and may be associated with an increase in these functional metabolites. This suggested that FMMIX could be a promising adjunctive strategy for managing constipation symptoms and could contribute to the development of functional foods aimed at improving gut health.
Collapse
Affiliation(s)
- Shasha Cheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Baolei Li
- National Center of Technology Innovation for Dairy, Shanghai 201111, China
| | - Yixin Ding
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Baochao Hou
- National Center of Technology Innovation for Dairy, Shanghai 201111, China
| | - Weilian Hung
- National Center of Technology Innovation for Dairy, Shanghai 201111, China
| | - Jian He
- National Center of Technology Innovation for Dairy, Shanghai 201111, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Wang H, Zhao D, Wang S, Liu H, Zhao S, Li Z, Qin X, Liu X. Gastrointestinal Characteristics of Constipation from the Perspectives of Microbiome and Metabolome. Dig Dis Sci 2024; 69:1318-1335. [PMID: 38446304 DOI: 10.1007/s10620-024-08334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Constipation is one of the most common gastrointestinal complaints. Yet, the underlying mechanisms of constipation remain to be explored deeply. Integration of microbiome and metabolome is powerful and promising to demonstrate characteristics of constipation. AIM OF STUDY This study aimed to characterize intestinal microbiome and metabolome of constipation. In addition, this study revealed the correlations among behaviors, intestinal microbiota, and metabolites interrupted by constipation. METHODS Firstly, the constipation model was successfully applied. At the macro level, the ability of learning, memory, locomotor activity, and the defecation index of rats with constipation-like phenotype were characterized. At the micro-level, 16S rRNA sequencing was applied to analyze the intestinal microbiota in rats with constipation-like phenotype. 1H nuclear magnetic resonance (NMR)-based metabolomics was employed to investigate the metabolic phenotype of constipation. In addition, we constructed a correlation network, intuitively showing the correlations among behaviors, intestinal microbiota, and metabolites. RESULTS Constipation significantly attenuated the locomotor activity, memory recognition, and frequency of defecation of rats, while increased the time of defecation. Constipation significantly changed the diversity of intestinal microbial communities, which correspondingly involved in 5 functional pathways. Besides, 28 fecal metabolites were found to be associated with constipation, among which 14 metabolites were further screened that can be used to diagnose constipation. On top of this, associated networks intuitively showed the correlations among behaviors, intestinal microbiota, and metabolites. CONCLUSIONS The current findings are significant in terms of not only laying a foundation for understanding characteristics of constipation, but also providing accurate diagnosis and treatments of constipation clinically.
Collapse
Affiliation(s)
- Huimin Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
- Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Di Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
- Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Senyan Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
- Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Huanle Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
- Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Sijun Zhao
- Department of Pharmacology, Shanxi Institute for Food and Drug Control, No. 12, Taiyuan South Rd., Yingze Dist, Taiyuan, 030001, Shanxi, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
- Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
- Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China.
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China.
- Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
6
|
Cui L, Zhang B, Zou S, Liu J, Wang P, Li H, Zhang Z. Fenchone Ameliorates Constipation-Predominant Irritable Bowel Syndrome via Modulation of SCF/c-Kit Pathway and Gut Microbiota. J Microbiol Biotechnol 2024; 34:367-378. [PMID: 38073315 PMCID: PMC10940742 DOI: 10.4014/jmb.2308.08011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 03/01/2024]
Abstract
In this study we sought to elucidate the therapeutic effects of fenchone on constipation-predominant irritable bowel syndrome (IBS-C) and the underlying mechanisms. An IBS-C model was established in rats by administration of ice water by gavage for 14 days. Fenchone increased the reduced body weight, number of fecal pellets, fecal moisture, and intestinal transit rate, and decreased the enhanced visceral hypersensitivity in the rat model of IBS-C. In addition, fenchone increased the serum content of excitatory neurotransmitters and decreased the serum content of inhibitory neurotransmitters in the IBS-C rat model. Meanwhile, western blot and immunofluorescence experiments indicated that fenchone increased the expressions of SCF and c-Kit. Furthermore, compared with the IBS-C model group, fenchone increased the relative abundance of Lactobacillus, Blautia, Allobaculum, Subdoligranulum, and Ruminococcaceae_UCG-008, and reduced the relative abundance of Bacteroides, Enterococcus, Alistipes, and Escherichia-Shigella on the genus level. Overall, fenchone ameliorates IBS-C via modulation of the SCF/c-Kit pathway and gut microbiota, and could therefore serve as a novel drug candidate against IBS-C.
Collapse
Affiliation(s)
- Li Cui
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China
| | - Bin Zhang
- Digestive Department, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211200, Jiangsu, P.R. China
| | - Shuting Zou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China
| | - Jing Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China
| | - Pingrong Wang
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210016, P.R. China
| | - Hui Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China
| |
Collapse
|
7
|
Huang WR, Fang QH, Yu XB, Ge WH, Yu Y. The Potential Application of Aloe Barbadensis Mill. as Chinese Medicine for Constipation: Mini-Review. Drug Des Devel Ther 2024; 18:307-324. [PMID: 38328440 PMCID: PMC10849880 DOI: 10.2147/dddt.s446563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Aloe barbadensis Mill. has a long history of medicinal use in the annals of traditional Chinese medicine, wherein it has garnered considerable renown. Its multifaceted therapeutic properties, characterized by its anti-inflammatory and antibacterial attributes, alongside its established efficacy as a laxative agent, have been extensively documented. This review commences with an exploration of the nomenclature, fundamental characteristics, and principal constituents of Aloe barbadensis Mill. responsible for its laxative effects. Subsequently, we delve into an extensive examination of the molecular mechanisms underlying Aloe barbadensis Mill.'s laxative properties, types of constipation treatments, commercially available preparations, considerations pertaining to toxicity, and its clinical applications. This review aims to serve as a comprehensive reference point for healthcare professionals and researchers, fostering an enhanced understanding of the optimal utilization of Aloe barbadensis Mill. in the treatment of constipation.
Collapse
Affiliation(s)
- Wei-Rui Huang
- School of Pharmacy & Fujian Center for New Drug Safety Evaluation, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Quan-Hui Fang
- School of Pharmacy & Fujian Center for New Drug Safety Evaluation, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Xiang-Bin Yu
- School of Pharmacy & Fujian Center for New Drug Safety Evaluation, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Wei-Hong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People’s Republic of China
- School of Pharmacy, Macau University of Science and Technology, Macau SAR, 999078, People’s Republic of China
| | - Yue Yu
- School of Pharmacy & Fujian Center for New Drug Safety Evaluation, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| |
Collapse
|
8
|
Wang L, Yang S, Mei C, Tang N, Wang J, Yu Q, Wang G, Wu G, Zhao J, Chen W. Lactobacillus paracasei Relieves Constipation by Acting on the Acetic Acid-5-HT-Intestinal Motility Pathway. Foods 2023; 12:4176. [PMID: 38002233 PMCID: PMC10670763 DOI: 10.3390/foods12224176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/12/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Constipation is a major health concern worldwide and requires effective and safe treatment options. In this study, we selected ten strains of two species of lactobacilli to identify whether they were effective against constipation induced by loperamide administration in BALB/c mice. Monitoring of constipation-related indicators indicated that Lactobacillus paracasei (L. paracasei) mainly acted on the whole intestinal peristalsis to relieve constipation. Furthermore, through the detection of biological, chemical, mechanical, and immune barriers in mice, it was discovered that L. paracasei changed the relative abundance of bacteria related to the levels of acetic acid and 5-hydroxytryptamine (5-HT) (such as by increasing the relative abundance of Odoribacter and Clostridium, and reducing the relative abundance of Mucispirillum, Ruminococcus, Coprobacillus, and Dorea), increased the concentration of acetic acid in the intestine, which stimulated enterochromaffin cells, promoted 5-HT synthesis in the colon, enhanced intestinal motility, and relieved constipation. In conclusion, this study provides a theoretical foundation for the development of personalized products for the treatment of constipation.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.W.); (S.Y.); (C.M.); (N.T.); (J.W.); (Q.Y.); (G.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shurong Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.W.); (S.Y.); (C.M.); (N.T.); (J.W.); (Q.Y.); (G.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chunxia Mei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.W.); (S.Y.); (C.M.); (N.T.); (J.W.); (Q.Y.); (G.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nan Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.W.); (S.Y.); (C.M.); (N.T.); (J.W.); (Q.Y.); (G.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jialiang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.W.); (S.Y.); (C.M.); (N.T.); (J.W.); (Q.Y.); (G.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiangqing Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.W.); (S.Y.); (C.M.); (N.T.); (J.W.); (Q.Y.); (G.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.W.); (S.Y.); (C.M.); (N.T.); (J.W.); (Q.Y.); (G.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Gaojue Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.W.); (S.Y.); (C.M.); (N.T.); (J.W.); (Q.Y.); (G.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Department of Gastroenterology, Jiangnan University Medical Center, Wuxi 214002, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.W.); (S.Y.); (C.M.); (N.T.); (J.W.); (Q.Y.); (G.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.W.); (S.Y.); (C.M.); (N.T.); (J.W.); (Q.Y.); (G.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
The Probiotic Combination of Lacticaseibacillus paracasei JY062 and Lactobacillus gasseri JM1 Alleviates Gastrointestinal Motility Disorder via Improving Gut Microbiota. Nutrients 2023; 15:nu15040839. [PMID: 36839197 PMCID: PMC9958595 DOI: 10.3390/nu15040839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Probiotics have received wide attention as a potential way to alleviate gastrointestinal (GI) motility disorders. Herein, we investigated the effects of Lacticaseibacillus paracasei JY062, Lactobacillus gasseri JM1, and the probiotic combination at 5 × 109 CFU/mL on mice induced by loperamide and explored the possible underlying mechanisms in GI motility disorder. After two weeks of probiotic intervention, the results indicated that the probiotic combination alleviated GI motility disorder better. It increased the secretion of excitatory GI regulators motilin, gastrin, and 5-hydroxytryptamine (5-HT) and decreased the secretion of the inhibitory GI regulators peptide YY and nitric oxide (NO), except vasoactive intestinal peptide. 5-HT and NO were related to the mRNA expression of 5-HT4 receptor and nitric oxide synthase, respectively. The intervention of probiotic combination also increased the number of interstitial cells of Cajal and the expression of SCF/c-kit protein. In addition, it also increased the abundance of beneficial bacteria (Lactobacillus, Rikenellaceae, and Clostridiaceae_Clostridium) and improved the contents of short-chain fatty acids in cecum contents of mice. In conclusion, the probiotic combination of L. paracasei JY062 and L. gasseri JM1 has the potential to alleviate GI motility disorders by balancing intestinal homeostasis.
Collapse
|
10
|
Gao H, He C, Hua R, Liang C, Wang B, Du Y, Xin S, Guo Y, Gao L, Zhang L, Shang H, Xu J. Underlying beneficial effects of Rhubarb on constipation-induced inflammation, disorder of gut microbiome and metabolism. Front Pharmacol 2022; 13:1048134. [PMID: 36545319 PMCID: PMC9760883 DOI: 10.3389/fphar.2022.1048134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Constipation is a common syndrome and a worldwide healthy problem. Constipation patients are becoming younger, with a 29.6% overall prevalence in children, which has captured significant attention because of its epigenetic rejuvenation and recurrent episodes. Despite the usage of rhubarb extract to relieve constipation, novel targets and genes implicated in target-relevant pathways with remarkable functionalities should still be sought for. Materials and methods: We established a reliable constipation model in C57B/6N male mice using intragastric administration diphenoxylate, and the eligible subjects received 600 mg/25 g rhubarb extract to alleviate constipation. Resultant constipation was morphological and genetically compared with the specimen from different groups. Results: Constipation mice exhibited thicker muscle layers, higher levels of cytokines, including IL-17 and IL-23, and lower content of IL-22. Bacterial abundance and diversity varied tremendously. Notably, the alterations were reversed following rhubarb extract treatment. Additionally, Constipation also had a substantial impact on short-chain fatty acids (SCFAs), medium- and long-chain fatty acids (MLCFAs), and the expression of SCFA receptors, GPR41 and GPR43. Conclusion: This thesis has provided insight that rhubarb extract promoted the flexibility of collagen fiber, reduced pro-inflammatory cytokines, enhanced anti-inflammatory cytokines, and maintained gut microflora balance with potential impacts on the fatty acid and polyamine metabolism.
Collapse
Affiliation(s)
- Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chen Liang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Boya Wang
- Undergraduate Student of 2018 Eight Program of Clinical Medicine, Peking University Peoples Hospital, Beijing, China
| | - Yixuan Du
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuexin Guo
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Lucia Zhang
- Class of 2025, Loomis Chaffee School, Windsor, CT, United States
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China,*Correspondence: Jingdong Xu,
| |
Collapse
|
11
|
Liu X, Li M, Jian C, Wei F, Liu H, Li K, Qin X. Astragalus Polysaccharide Alleviates Constipation in the Elderly Via Modification of Gut Microbiota and Fecal Metabolism. Rejuvenation Res 2022; 25:275-290. [PMID: 36205566 DOI: 10.1089/rej.2022.0039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Constipation is one of the most common gastrointestinal disorders, whose incidence increasing with age. As one of the main components, Astragalus polysaccharide (APS) has been used to treat a variety of diseases. This study aimed to explore the effects of APS on the improvement of gastrointestinal functions and learning memory in elderly rats with constipation. In this study, both 16S rRNA sequencing-based microbiome and 1H NMR-based metabolomics were applied to demonstrate the effects of APS on host metabolism and gut microbiota of the elderly rats with constipation. On top of this, we constructed both inter- and inner-layer networks, intuitively showing the correlations among behavioral indicators, intestinal bacteria, and differential metabolites. Our results showed that APS significantly ameliorated the constipation and the cognitive dysfunctions of rats. Microbiome analysis revealed that APS raised the relative abundance of Blautia, whereas decreased the relative abundance of Lactobacillus in the elderly rats with constipation. In addition, APS decreased the levels of acetate, butyrate, and propionate in the fecal samples, correspondingly regulating glycolysis/gluconeogenesis metabolism and pyruvate metabolism. These findings lay solid foundations for understanding the pathogenesis of constipation in the elderly, and also offer a promising new treatment strategy for constipation in the elderly.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan, China
| | - Mengyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan, China
| | - Chen Jian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan, China
| | - Fuxiao Wei
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan, China
| | - Huanle Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan, China
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan, China
| |
Collapse
|
12
|
Kim HR, Park IS, Park SB, Yang HJ, Jeong DY, Kim SY. Comparison of laxative effects of fermented soybeans ( Cheonggukjang) containing toxins and biogenic amines against loperamide-induced constipation mouse model. Nutr Res Pract 2022; 16:435-449. [PMID: 35919294 PMCID: PMC9314190 DOI: 10.4162/nrp.2022.16.4.435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/09/2021] [Accepted: 10/29/2021] [Indexed: 11/04/2022] Open
Affiliation(s)
- Ha-Rim Kim
- Jeonju AgroBio-Materials Institute, Jeonju 54810, Korea
| | - In-Sun Park
- Jeonju AgroBio-Materials Institute, Jeonju 54810, Korea
| | - Su-Bin Park
- Jeonju AgroBio-Materials Institute, Jeonju 54810, Korea
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry, Sunchang 56048, Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry, Sunchang 56048, Korea
| | | |
Collapse
|
13
|
Liu H, Luo S, Liu J, Yan Q, Yang S, Jiang Z. Novel green soybean shuidouchi fermented by Bacillus velezensis with multibioactivities. Food Sci Nutr 2021; 9:6538-6547. [PMID: 34925783 PMCID: PMC8645744 DOI: 10.1002/fsn3.2579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Soybeans are usually fermented by Bacillus subtilis to produce shuidouchi, which is a traditional fermentation soybean product in China. In the study, green soybeans were fermented by Bacillus velezensis to make a novel green soybean shuidouchi with multibioactivities. The processing conditions were optimized as follows: initial moisture content 75%, inoculum concentration 7 log CFU/g, and incubation time 24 h for prefermentation; water addition 50%, salt addition 6%, temperature 45°C, 3 days for postfermentation. The fermented green soybean shuidouchi (FGSS) showed 234.8 FU/g dry weight (DW) for the fibrinolytic activity and IC50 of 0.33 mg/ml for the anticoagulant activity. FGSS had higher contents of chemical components including 3.6 mg rutin (RE)/g DW of total flavonoids, 8.2 mg gallic acid (GAE)/g DW of total phenolics, 63.7 mg/g DW of reducing sugars, and 163.8 mg/g DW of peptides than the unfermented green soybean shuidouchi (UGSS). Moreover, it exhibited high antioxidant activities of 29.8, 85.1 μmol trolox equivalent (TE)/g DW, and 12.8 μmol Fe2+/g DW through 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), and ferric reducing antioxidant power (FRAP) experiments. Thus, a novel green soybean shuidouchi fermented by B. velezensis owing to multibioactivities can provide a theoretical basis for the further development of functional shuidouchi.
Collapse
Affiliation(s)
- Hong Liu
- Key Laboratory of Food Bioengineering (China National Light Industry)College of EngineeringChina Agricultural UniversityBeijingChina
| | - Shen Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Jun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Qiaojuan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry)College of EngineeringChina Agricultural UniversityBeijingChina
| | - Shaoqing Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Zhengqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| |
Collapse
|
14
|
Tan Q, Hu J, Zhou Y, Wan Y, Zhang C, Liu X, Long X, Tan F, Zhao X. Inhibitory Effect of Lactococcus lactis subsp. lactis HFY14 on Diphenoxylate-Induced Constipation in Mice by Regulating the VIP-cAMP-PKA-AQP3 Signaling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1971-1980. [PMID: 34007157 PMCID: PMC8123977 DOI: 10.2147/dddt.s309675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/24/2021] [Indexed: 12/26/2022]
Abstract
Aim The naturally fermented yak yogurt of pastoralists in the Tibetan Plateau, China, because of its unique geographical environment and the unique lifestyle of Tibetan pastoralists, is very different from other kinds of sour milk, and the microorganisms it contains are special. Lactococcus lactis subsp. lactis HFY14 (LLSL-HFY14) is a new lactic acid bacterium isolated from naturally fermented yak yogurt. The purpose of this study was to study the inhibitory effect of the bacterium on constipation. Methods Constipation was induced in ICR mice with diphenoxylate, and the constipated mice were treated with LLSL-HFY14. The weight and feces of the mice were visually detected. Colonic tissues were observed on hematoxylin and eosin-stained sections. Serum indices were detected with kits. mRNA expression in the colon was determined by quantitative polymerase chain reaction assay. Results Constipation caused weight loss, the number of defecation granules, defecation weight, fecal water content decreased, and the first black stool excretion time increased. LLSL-HFY14 alleviated these symptoms, and the effects were similar to those of lactulose (drug). The pathological examination revealed that constipation caused pathological changes in the colon, and LLSL-HFY14 effectively alleviated the disease. LLSL-HFY14 increased serum levels of motilin, gastrin, endothelin, substance P, acetylcholinesterase, and vasoactive intestinal peptide (VIP) and decreased serum levels of somatostatin in constipated mice. In addition, LLSL-HFY14 upregulated VIP, cAMP, protein kinase A, and aquaporin 3 expression in colonic tissues of constipated mice in a dose-dependent manner. Conclusion LLSL-HFY14 inhibited constipation, similar to lactulose, and has the potential to become a biological agent.
Collapse
Affiliation(s)
- Qian Tan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Jing Hu
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Yujing Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Yunxiao Wan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Chuanlan Zhang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Xin Liu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,Department of Food Science and Biotechnology, Cha University, Seongnam, 13488, South Korea
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, 838 Valenzuela, Philippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| |
Collapse
|
15
|
Gan Y, Liang J, Diao W, Zhou X, Mu J, Pang L, Tan F, Zhao X. Lactobacillus plantarum KSFY06 and geniposide counteract montmorillonite-induced constipation in Kunming mice. Food Sci Nutr 2020; 8:5128-5137. [PMID: 32994973 PMCID: PMC7500764 DOI: 10.1002/fsn3.1814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/17/2022] Open
Abstract
Constipation is a common clinical manifestation of digestive system disorders and occurs worldwide. This study investigated the ability of Lactobacillus plantarum KSFY06 (LP-KSFY06) to promote the action of geniposide in preventing montmorillonite-induced constipation in Kunming mice, with the aim of providing a successful solution. The effects of LP-KSFY06 and geniposide on constipation were measured, and the results showed that the protective effect of geniposide on constipation was enhanced by LP-KSFY06 and that the combination resulted in increased weight, moisture content, and particle number of feces. The first black stool defecation time was decreased from 182 min to 87 min, which clearly indicates that defecating difficulty was alleviated in constipated mice. The synergic intervention of LP-KSFY06 and geniposide (LP + G) assisted in maintaining the body weight of constipated mice. The LP + G intervention significantly increased serum levels of motilin (MTL, 167.8 pg/ml), acetylcholinesterase (AChE, 45.3 pg/ml), substance P (SP, 61.0 pg/ml), vasoactive intestinal peptide (VIP, 70.5 pg/ml), endothelin-1 (ET-1, 16.1 pg/ml), and gastrin (73.0 pg/ml) and remarkably decreased somatostatin (SS, 35.2 pg/ml) when compared to those indexes in the LP-KSFY06 group and geniposide group. The LP + G treatment also significantly increased the mRNA expression of cluster of differentiation 117 (c-Kit), stem cell factor (SCF), glial cell-derived neurotrophic factor (GDNF), and remarkably downregulated the expression of inducible nitric oxide synthase (iNOS), transient receptor potential vanilloid-1 (TRPV1), and cyclooxygenase-2 (COX-2). The experimental results showed that the combination treatment has the strongest prevention effect against constipation, and LP-KSFY06 promotes the ability of geniposide to prevent constipation. Therefore, LP-KSFY06 is a potential probiotic strain with the capacity to prevent montmorillonite-induced constipation.
Collapse
Affiliation(s)
- Yi Gan
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Jie Liang
- Department of PediatricsChongqing Traditional Chinese Medicine HospitalChongqingChina
| | - Wenjing Diao
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Liang Pang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Hospital of StomatologyChongqing Medical UniversityChongqingChina
| | - Fang Tan
- Department of Public HealthOur Lady of Fatima UniversityValenzuelaPhilippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| |
Collapse
|
16
|
Mu J, Zhao X, Zalan Z, Hegyi F, Takács K, Du M. Lactobacillus plantarum KFY02 enhances the relieving effect of gardenoside on montmorillonite induced constipation in mice. RSC Adv 2020; 10:10368-10381. [PMID: 35498605 PMCID: PMC9050385 DOI: 10.1039/c9ra10446a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/12/2020] [Indexed: 12/19/2022] Open
Abstract
Lactobacillus plantarum KFY02 (KFY02), isolated from naturally fermented milk yoghurt in Korla, Xinjiang, Northwest of China, showed gardenoside action for the intestinal regulation of constipated mice. Comparatively, the effects of KFY02 (0.5 × 108 CFU kg-1, by body weight (BW)), gardenoside (50 mg kg-1, BW), and KFY02 (0.5 × 108 CFU kg-1, BW) + gardenoside (50 mg kg-1, BW) on intestinal regulation in mice with montmorillonite-induced constipation were also studied. Enzyme linked immunoassay, hemotoxylin and eosin (H&E) staining, quantitative polymerase chain reaction (qPCR) assay and high performance liquid chromatography (HPLC) analysis were used for the study. Compared with the model group, KFY02 + genipin (combined group) increased the propelling rate of activated carbon in the small intestines of mice and accelerated the discharge of the first black stool in mice. At the same time, the combination group reduced the levels of motilin (MTL), substance P (SP) and endothelin-1 (ET-1) in the serum, and increased the somatostatin (SS), vasoactive intestinal peptide (VIP), acetylcholinesterase (AchE) and gastrin (Gastrin) levels in the serum, which made these parameters close to those of the normal group. Using qPCR analysis, it was observed that the combined group up-regulated the mRNA expression of endothelial nitric oxide synthase (eNOS), stem cell factor (SCF), stem cell factor receptor (c-Kit), glutathione (GSH), catalase and manganese-superoxide dismutase (Mn-SOD) and down-regulated the expression of inducible nitric oxide synthase (iNOS) and transient receptor potential vanilloid receptor 1 (TRPV1). The combination increased the Bacteroides and Akkermansia abundances and decreased the Firmicutes abundance in the feces of the constipated mice and decreased the Firmicutes/Bacteroides ratio. The expression of the above genes was similar to that of the normal group. The results indicate that KFY02 produced β-glucosidase to hydrolyze the gardenoside glycosidic bond to produce genipin and can effectively promote the regulation of gastrointestinal hormones and intestinal peristalsis and reduce oxidative tissue damage in constipated mice. This study also confirmed that KFY02 has similar relieving effects to gardenoside for constipation in mice.
Collapse
Affiliation(s)
- Jianfei Mu
- College of Food Science, Southwest University Chongqing 400715 China +86-23-68250478
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 China
| | - Zsolt Zalan
- National Agricultural Research and Innovation Center, Food Science Research Institute Budapest H-1022 Hungary
| | - Ferenc Hegyi
- National Agricultural Research and Innovation Center, Food Science Research Institute Budapest H-1022 Hungary
| | - Krisztina Takács
- National Agricultural Research and Innovation Center, Food Science Research Institute Budapest H-1022 Hungary
| | - Muying Du
- College of Food Science, Southwest University Chongqing 400715 China +86-23-68250478
- Chinese-Hungarian Cooperative Research Centre for Food Science, Southwest University Chongqing 400715 China
| |
Collapse
|
17
|
Zhang J, Lu DY, Yuan Y, Chen J, Yi S, Chen B, Zhao X. Liubao Insect tea polyphenols prevent HCl/ethanol induced gastric damage through its antioxidant ability in mice. RSC Adv 2020; 10:4984-4995. [PMID: 35498330 PMCID: PMC9049073 DOI: 10.1039/c9ra09641h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/24/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to study the preventive effects of polyphenols extracted from Liubao Insect tea on gastric injury. The content of Liubao Insect tea polyphenols (LITP) was 72.36% by ion precipitation extraction method. HCl/ethanol-induced gastric injury in mice led to increased gastric juice volume and decreased pH. LITP increased the gastric juice pH value and reduced the gastric juice volume at slightly lower quantities than ranitidine. Visual observation of gastric tissue showed that LITP could effectively reduce the area of gastric injury, and higher concentrations of LITP had a greater effect. Pathological observation also confirmed that LITP can reduce the cell damage and inflammatory effects, and play a role in preventing gastric injury. Serum cytokine assays showed that LITP could reduce the levels of IL-6 (interleukin 6), TNF-α (tumor necrosis factor alpha) and IFN-γ (interferon gamma) induced by gastric injury, and the effects of higher concentration of LITP were similar to those of ranitidine. The results showed that LITP could increase SOD (superoxide dismutase) and GSH (glutathione) levels; decrease MDA (malondialdehyde) and MPO (myeloperoxidase) levels; up-regulate the expression of Cu/Zn-SOD (cuprozinc-superoxide dismutase), Mn-SOD (manganese superoxide dismutase), CAT (catalase), nNOS (neuronal nitric oxide synthase), eNOS (endothelial nitric oxide synthase); and down-regulate the expression of iNOS (inducible nitric oxide synthase), COX-2 (cyclooxygenase-2), TNF-α, and IL-1β (interleukin-1 beta) in mice with gastric injury, thus inhibiting gastric injury. We demonstrate that LITP is an active substance which could prevent gastric injury in experimental animals. With the increase of LITP concentration, its effects on preventing gastric injury were stronger and similar to those of ranitidine. The aim of this study was to study the preventive effects of polyphenols extracted from Liubao Insect tea on gastric injury.![]()
Collapse
Affiliation(s)
- Jing Zhang
- Environment and Quality Inspection College
- Chongqing Chemical Industry Vocational College
- Chongqing 401228
- China
- Chongqing Collaborative Innovation Center for Functional Food
| | - De-Yun Lu
- Department of Gastroenterology
- Chengdu First People's Hospital
- Chengdu 610041
- China
| | - Ying Yuan
- Environment and Quality Inspection College
- Chongqing Chemical Industry Vocational College
- Chongqing 401228
- China
| | - Jingxia Chen
- Environment and Quality Inspection College
- Chongqing Chemical Industry Vocational College
- Chongqing 401228
- China
| | - Sha Yi
- Environment and Quality Inspection College
- Chongqing Chemical Industry Vocational College
- Chongqing 401228
- China
| | - Benchou Chen
- Environment and Quality Inspection College
- Chongqing Chemical Industry Vocational College
- Chongqing 401228
- China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food
- Chongqing University of Education
- Chongqing 400067
- China
| |
Collapse
|
18
|
Yi R, Peng P, Zhang J, Du M, Lan L, Qian Y, Zhou J, Zhao X. Lactobacillus plantarum CQPC02-Fermented Soybean Milk Improves Loperamide-Induced Constipation in Mice. J Med Food 2019; 22:1208-1221. [PMID: 31621475 DOI: 10.1089/jmf.2019.4467] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study determined the ameliorative effects of the novel microorganism, Lactobacillus plantarum CQPC02 (LP-CQPC02), fermented in soybean milk, on loperamide-induced constipation in Kunming mice. High-performance liquid chromatography revealed that LP-CQPC02-fermented soybean milk (LP-CQPC02-FSM) had six types of soybean isoflavones, whereas Lactobacillus bulgaricus-fermented soybean milk (LB-FSM) and unfermented soybean milk (U-FSM) only had five types of soybean isoflavones. LP-CQPC02-FSM also contained more total and active soybean isoflavones than LB-FSM and U-FSM. Results from mouse experiments showed that the defecation factors (quantity, fecal weight and water content, gastrointestinal transit ability, and time to first black stool) in the LP-CQPC02-FSM-treated mice were better than those in the LB-FSM- and U-FSM-treated mice. The serum and small intestinal tissue experiments showed that soybean milk increased the motilin, gastrin, endothelin, acetylcholinesterase, substance P, vasoactive intestinal peptide, and glutathione levels and decreased the somatostatin, myeloperoxidase, nitric oxide, and malondialdehyde levels compared with the constipated mice in the control group. The LP-CQPC02-FSM also showed better effects than those of LB-FSM and U-FSM. Further results showed that LP-CQPC02-FSM upregulated cuprozinc-superoxide dismutase (Cu/Zn-SOD), manganese superoxide dismutase (Mn-SOD), catalase (CAT), c-Kit, stem cell factor (SCF), glial cell-derived neurotrophic factor (GDNF), neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), and aquaporin-9 (AQP9) and downregulated the expression levels of transient receptor potential cation channel subfamily V member 1 (TRPV1), inducible nitric oxide synthase (iNOS), and aquaporin-3 (AQP3) in the constipated mice. LP-CQPC02-FSM increased the Bacteroides and Akkermansia abundances and decreased the Firmicutes abundance in the feces of the constipated mice and decreased the Firmicutes/Bacteroides ratio. This study confirmed that LP-CQPC02-FSM partially reversed constipation in mice.
Collapse
Affiliation(s)
- Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Peng Peng
- Department of Gastroenterology, Emergency Medical Center of Chongqing, the Affiliated Central Hospital of Chongqing University, Chongqing, China
| | - Jing Zhang
- Environment and Quality Inspection College, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Muying Du
- College of Food Science, Southwest University, Chongqing, China
| | - Lingxia Lan
- College of Food Science, Southwest University, Chongqing, China
| | - Yu Qian
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Jie Zhou
- College of Food Science, Southwest University, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|