1
|
Yang F, Teng J, Liu J, Yu D, Gao P, Yu P, Jiang Q, Xu Y, Xia W. Texture maintenance and degradation mechanism of ice-stored grass carp (Ctenopharyngodon idella): A scope of intramuscular connective tissue. Food Chem 2024; 432:137256. [PMID: 37643518 DOI: 10.1016/j.foodchem.2023.137256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Although intramuscular connective tissue (IMCT) is low in fish, its impact on texture cannot be ignored due to its special location. Therefore, this study was aimed to investigate the contribution of IMCT degradation to fish softening and its mechanism induced by endogenous proteases. Results showed that IMCT honeycomb-like structure collapsed entirely on the 10th day of ice storage, along with a decrease of shear force by 36.5%. Meanwhile, IMCT and myofibrils (MF) degradation accelerated softening by 25.1% and 15.3% during 10 days of ice storage, respectively. Next, IMCT deterioration was indicated to be highly correlated with decorin degradation (0.956**), followed by elastin (0.928**) and collagen (0.904**). Ulteriorly, endogenous collagenase was shown to degrade IMCT crucial components, while endogenous cathepsins had little effect. In conclusion, this study confirmed that IMCT played an essential role in maintaining fish texture and was mainly degraded by endogenous collagenase.
Collapse
Affiliation(s)
- Fang Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jialu Teng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jixuan Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Pei Gao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peipei Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yanshun Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Listrat A, Gagaoua M, Normand J, Gruffat D, Andueza D, Mairesse G, Mourot BP, Chesneau G, Gobert C, Picard B. Contribution of connective tissue components, muscle fibres and marbling to beef tenderness variability in longissimus thoracis, rectus abdominis, semimembranosus and semitendinosus muscles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2502-2511. [PMID: 31960978 DOI: 10.1002/jsfa.10275] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The present study aimed to identify relationships between components of intramuscular connective tissue, proportions of the different fiber types, intramuscular fat and sensory tenderness of beef cooked at 55 °C. Accordingly, four muscles differing in their metabolic and contractile properties, as well as in their collagen content and butcher value, were obtained from dairy and beef cattle of several ages and sexes and were then used to create variability. RESULTS Correlation analyses and/or stepwise regressions were applied on Z-scores to identify the existing and robust associations. Tenderness scores were further categorized into tender, medium and tough classes using unsupervised learning methods. The findings revealed a muscle-dependant role with respect to tenderness of total and insoluble collagen, cross-links, and type IIB + X and IIA muscle fibers. The longissimus thoracis and semitendinosus muscles that, in the present study, were found to be extreme in their tenderness potential were also very different from each other and from the rectus abdominis (RA) and semimembranosus (SM). RA and SM muscles were very similar regarding their relationship for muscle components and tenderness. A relationship between marbling and tenderness was only present when the results were analysed irrespective of all factors of variation of the experimental model relating to muscle and animal type. CONCLUSION The statistical approaches applied in the present study using Z-scores allowed identification of the robust associations between muscle components and sensory beef tenderness and also identified discriminatory variables of beef tenderness classes. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anne Listrat
- PHASE Department, Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Mohammed Gagaoua
- PHASE Department, Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Dublin, Ireland
| | - Jérome Normand
- Institut de l'Elevage, Service Qualité des Viandes, Lyon, France
| | - Dominique Gruffat
- PHASE Department, Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Donato Andueza
- PHASE Department, Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | | | | | | | | | - Brigitte Picard
- PHASE Department, Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| |
Collapse
|
3
|
Current Advances in Meat Nutritional, Sensory and Physical Quality Improvement. Foods 2020; 9:foods9030321. [PMID: 32164289 PMCID: PMC7143788 DOI: 10.3390/foods9030321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 01/06/2023] Open
Abstract
Meat is an important source of proteins, vitamins, minerals and fat, and these nutrients are important for their beneficial effects on human health. In recent years, meat quality has become a more relevant topic for consumers with regard to health and sensory characteristics, and for beef industry stakeholders because it affects their profitability. Therefore, the control of meat quality, including technological, sensory and nutritional quality traits, constitutes an important target for any farm animal production. What those qualities are and how we best evaluate them at the different levels of the continuum from the farm to fork are critical to understanding meat production and consumption patterns. However, despite the efforts of the industrials to control the eating and nutritional quality traits of meat and meat products, there remains a high level of variability, which is one reason for consumer dissatisfaction. This Special Issue focuses on the study of continuum aspects from farm to fork, which would have an impact on the control of the nutritional, sensory and technological aspects of carcass, muscle, meat and meat-product qualities. It groups fourteen original studies and one comprehensive review within five main topics that are (i) production systems and rearing practices, (ii) prediction of meat qualities, (iii) statistical approaches for meat quality prediction/management, (iv) muscle biochemistry and proteomics techniques and (v) consumer acceptability, development and characterisation of meat products.
Collapse
|
5
|
Beef Tenderness Prediction by a Combination of Statistical Methods: Chemometrics and Supervised Learning to Manage Integrative Farm-To-Meat Continuum Data. Foods 2019; 8:foods8070274. [PMID: 31336646 PMCID: PMC6678335 DOI: 10.3390/foods8070274] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 01/24/2023] Open
Abstract
This trial aimed to integrate metadata that spread over farm-to-fork continuum of 110 Protected Designation of Origin (PDO)Maine-Anjou cows and combine two statistical approaches that are chemometrics and supervised learning; to identify the potential predictors of beef tenderness analyzed using the instrumental Warner-Bratzler Shear force (WBSF). Accordingly, 60 variables including WBSF and belonging to 4 levels of the continuum that are farm-slaughterhouse-muscle-meat were analyzed by Partial Least Squares (PLS) and three decision tree methods (C&RT: classification and regression tree; QUEST: quick, unbiased, efficient regression tree and CHAID: Chi-squared Automatic Interaction Detection) to select the driving factors of beef tenderness and propose predictive decision tools. The former method retained 24 variables from 59 to explain 75% of WBSF. Among the 24 variables, six were from farm level, four from slaughterhouse level, 11 were from muscle level which are mostly protein biomarkers, and three were from meat level. The decision trees applied on the variables retained by the PLS model, allowed identifying three WBSF classes (Tender (WBSF ≤ 40 N/cm2), Medium (40 N/cm2 < WBSF < 45 N/cm2), and Tough (WBSF ≥ 45 N/cm2)) using CHAID as the best decision tree method. The resultant model yielded an overall predictive accuracy of 69.4% by five splitting variables (total collagen, µ-calpain, fiber area, age of weaning and ultimate pH). Therefore, two decision model rules allow achieving tender meat on PDO Maine-Anjou cows: (i) IF (total collagen < 3.6 μg OH-proline/mg) AND (µ-calpain ≥ 169 arbitrary units (AU)) AND (ultimate pH < 5.55) THEN meat was very tender (mean WBSF values = 36.2 N/cm2, n = 12); or (ii) IF (total collagen < 3.6 μg OH-proline/mg) AND (µ-calpain < 169 AU) AND (age of weaning < 7.75 months) AND (fiber area < 3100 µm2) THEN meat was tender (mean WBSF values = 39.4 N/cm2, n = 30).
Collapse
|