1
|
Ran J, Tang Y, Mao W, Meng X, Jiao L, Li Y, Zhao R, Zhou H. Optimization of the fermentation process and antioxidant activity of mixed lactic acid bacteria for honeysuckle beverage. Front Microbiol 2024; 15:1364448. [PMID: 38633692 PMCID: PMC11023714 DOI: 10.3389/fmicb.2024.1364448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/05/2024] [Indexed: 04/19/2024] Open
Abstract
The aim of the research was to obtain a high healthcare honeysuckle beverage with strong antioxidant activity. Honeysuckle (Lonicera japonica Thunb) was used as the raw material in this experiment. The effects of fermentation temperature, fermentation time, lactic acid bacteria inoculation amount, and sugar addition amount on the sensory quality of honeysuckle beverage were investigated by single factor test and orthogonal test, and the best process was obtained. The physicochemical indexes and antioxidant activity of honeysuckle beverages fermented with lactic acid bacteria were studied. The results showed that the fermentation temperature of the beverage was 37 °C, the fermentation time was 24 h, the inoculation amount of Lactiplantibacillus plantarum and Lactobacillus acidophilus mixed starter (1:1) was 3%, and 8% white granulated sugar was added. The highest sensory score was 87.30 ± 0.17, which was the optimal process. The honeysuckle liquid mixed inoculation with Lactiplantibacillus plantarum and Lactobacillus acidophilus was fermented for 24 h. The number of viable bacteria reached 9.84 ± 0.02 lg cfu/mL, the pH value was 3.10 ± 0.01, and the total polyphenol content was 7.53 ± 0.03 mg GAE/g. The number of lactic acid bacteria, pH, total polyphenol content, and free radical scavenging rate were significantly increased (p < 0.05) compared with the non-inoculated and single-inoculated lactic acid bacteria. To sum up, it was concluded that a better quality beverage could be obtained by fermenting a solution of honeysuckle with Lactiplantibacillus plantarum and Lactobacillus acidophilus mixed fermentation agent, providing a new approach and new ideas for the development of deep processing and fermented beverages using honeysuckle.
Collapse
Affiliation(s)
- Junjian Ran
- School of Food Science, School of Life Sciences, Henan Institute of Science and Technology, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, China
| | - Yuhan Tang
- School of Food Science, School of Life Sciences, Henan Institute of Science and Technology, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, China
| | - Weize Mao
- School of Food Engineering, Xinxiang Institute of Engineering, Xinxiang, China
| | - Xia Meng
- College of Pharmacy, Xinxiang University, Xinxiang, China
| | - Lingxia Jiao
- School of Food Science, School of Life Sciences, Henan Institute of Science and Technology, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, China
| | - Yongchao Li
- School of Food Science, School of Life Sciences, Henan Institute of Science and Technology, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, China
| | - Ruixiang Zhao
- School of Food Science, School of Life Sciences, Henan Institute of Science and Technology, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, China
| | - Haoyu Zhou
- School of Food Science, School of Life Sciences, Henan Institute of Science and Technology, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, China
| |
Collapse
|
2
|
Abedin MM, Chourasia R, Phukon LC, Sarkar P, Ray RC, Singh SP, Rai AK. Lactic acid bacteria in the functional food industry: biotechnological properties and potential applications. Crit Rev Food Sci Nutr 2023; 64:10730-10748. [PMID: 37405373 DOI: 10.1080/10408398.2023.2227896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
With the growing demand for functional foods having better nutraceutical properties, lactic acid bacteria (LAB) has become an important industrial microorganism. LAB play a significant role in the functional food industry by exhibiting probiotic properties and has the ability to produce various biologically active metabolites such as γ-aminobutyric acid (GABA), exopolysaccharides (EPSs), conjugated linoleic acid (CLA), bacteriocins, reuterin and reutericyclin, which provides enhanced nutraceutical properties to the final food products. LAB are also known to produce several specific enzymes essential for producing substrate-derived bioactive compounds, such as polyphenols, bioactive peptides, inulin-type fructans and β-glucans, fatty acids, and polyols. These compounds exhibit many health benefits, including better mineral absorption, oxidative stress protection, blood glucose and cholesterol-lowering properties, prevention of gastrointestinal tract infections and improved cardiovascular function. Further, metabolically engineered LAB have been widely used for the nutritive enhancement of different food products and the application of CRISPR-Cas9 holds tremendous potential for the engineering of food cultures. This review provides an overview of the use of LAB as probiotics, its application in producing fermented foods and nutraceutical products, and its health benefits on the host.
Collapse
Affiliation(s)
- Md Minhajul Abedin
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Rounak Chourasia
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Loreni Chiring Phukon
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Puja Sarkar
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Ramesh C Ray
- Centre for Food Biology and Environment Studies, Bhubaneswar, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Mohali, Punjab, India
| | - Amit Kumar Rai
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| |
Collapse
|
3
|
Mehta KA, Quek YCR, Henry CJ. Breadfruit (Artocarpus altilis): Processing, nutritional quality, and food applications. Front Nutr 2023; 10:1156155. [PMID: 37006932 PMCID: PMC10061028 DOI: 10.3389/fnut.2023.1156155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Breadfruit is an underutilized but highly nutritive crop containing complex carbohydrates while being low in fat. It is also a good source of essential amino acids (leucine, isoleucine, and valine). With a better understanding of breadfruit’s morphology, its potential as a global solution to food security has been gaining popularity. Breadfruit has been forecasted to have a larger amount of suitable cultivable land area compared to major crops such as rice and wheat, making its cultivation more desirable. Due to its highly perishable nature, good post-harvesting and post-processing practices are essential to extend the shelf life of breadfruit for global transportation and consumption. This paper aims to provide a comprehensive review on various processing methods of flour and starch, nutritional significance and new food applications of this novel food staple. In this review, the effects of the different processing and post-processing methods of breadfruit flour and starch have been described, and the nutritional composition and application of breadfruit flour as an ingredient replacer in various food applications have been discussed. It is vital to understand the processing and post-processing methods of breadfruit flour to enhance its shelf-life, physicochemical and functional properties. Furthermore, a compilation of novel food applications has been done to promote its use in the food industry. In conclusion, breadfruit flour and starch are highly versatile for use in numerous food products with added health benefits.
Collapse
Affiliation(s)
- Kervyn Ajay Mehta
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yu Chin Rina Quek
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- *Correspondence: Christiani Jeyakumar Henry,
| |
Collapse
|
4
|
Probiotication of Nutritious Fruit and Vegetable Juices: An Alternative to Dairy-Based Probiotic Functional Products. Nutrients 2022; 14:nu14173457. [PMID: 36079714 PMCID: PMC9459872 DOI: 10.3390/nu14173457] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Fruits and vegetables are widely known to be rich in nutrients, antioxidants, vitamins, dietary fiber, minerals, and a bioactive molecule, making them an essential component of a balanced diet with multiple documented positive effects on human health. The probiotication of plant-based juices for the production of functional and nutraceutical food serves as a healthy alternative to dairy probiotics. They are cholesterol free, lack several dairy allergens, and also encourage ingestion for people with lactose intolerance. This review highlights valuable claims regarding the efficacy of different probiotic strains on various diseases. A comprehensive nutrition comparison and the preference of plant-based over dairy probiotic drinks is also discussed, supported with updated market trends of probiotic drinks (dairy and non-dairy based). An extensive compilation of current plant-based probiotic drinks that are available in markets around the world is listed as a reference. The fermentability of carbon sources by probiotic microorganisms is crucial in addressing the development of plant-based drinks. Therefore, the pathway involved in metabolism of sucrose, glucose, fructose, and galactose in fruit and vegetable juice was also underlined. Finally, the key factors in monitoring the quality of probiotic products such as total soluble solids, sugar consumption, titratable acidity, pH, and stability at low storage temperatures were outlined.
Collapse
|
5
|
Alemneh ST, Emire SA, Jekle M, Hitzmann B. Effect of Refrigerated Storage on Some Physicochemical Characteristics of a
Teff‐Based
Fermented Beverage and on Viability of the Fermenting
Lactiplantibacillus plantarum
and
Lacticaseibacillus rhamnosus
Used. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sendeku Takele Alemneh
- Department of Process Analytics and Cereal Science Institute of Food Science and Biotechnology University of Hohenheim Stuttgart Germany
| | - Shimelis Admassu Emire
- Food Engineering Addis Ababa Institute of Technology Addis Ababa University Addis Ababa Ethiopia
| | - Mario Jekle
- Department of Plant‐Based Foods Institute of Food Science and Biotechnology University of Hohenheim Stuttgart Germany
| | - Bernd Hitzmann
- Department of Process Analytics and Cereal Science Institute of Food Science and Biotechnology University of Hohenheim Stuttgart Germany
| |
Collapse
|
6
|
How YH, Teo MYM, In LLA, Yeo SK, Pui LP. Development of fermented milk using food-grade recombinant Lactococcus lactis NZ3900. NFS JOURNAL 2022. [DOI: 10.1016/j.nfs.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Design of experiments meets immersive environment: Optimising eating atmosphere using artificial neural network. Appetite 2022; 176:106122. [PMID: 35675873 DOI: 10.1016/j.appet.2022.106122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/04/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022]
Abstract
Design of experiments (DOE) is a family of statistical tools commonly used in food science to optimise recipes and facilitate new food development. In a novel cross-disciplinary twist, we propose to adapt DOE approach to the optimisation of restaurant atmosphere. In this study, an artificial neural network (ANN) with particle swarm optimisation algorithm (PSO; hereafter ANN-PSO) was selected and compared with classical Response Surface Method (RSM) as ANN-PSO has been reported to yield better reliability and predictability compared to RSM. Recent research has increasingly demonstrated that perceived food quality, enjoyment, and willingness to pay are influenced by contextual factors such as lighting, decoration, and background noise/music. Moreover, virtual reality (VR) technology, which has become increasingly accessible, sophisticated, and widespread over the past years, presents a new way to study scenarios which may be otherwise too expensive/implausible to test in real life this includes delivering immersive environment. We hereby demonstrate a novel proof-of-concept study by varying the degree of illumination and of background sound level in an immersive restaurant setup. Participants (N = 283) watched immersive 360° videos while rating situational appropriateness and food wanting for two different dishes in various ambient conditions as determined by DOE's Central Composite Design (CCD). Participants did not actually consume the foods but rather only viewed them. Optimal restaurant lighting and sound levels were then estimated using ANN-PSO model which was found to be at 289 lux and -21.38 Loudness Unit Full Scale (LUFS) for burger and 186.9 lux and -30 LUFS for pizza. While the results of our study are of obvious interest to those in the hospitality industry, this work further highlights the transferability of methods across different disciplines and the applicability of time-tested methods to new emerging areas.
Collapse
|
8
|
Kumar S, Rattu G, Mitharwal S, Chandra A, Kumar S, Kaushik A, Mishra V, Nema PK. Trends in non‐dairy‐based probiotic food products: advances and challenges. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sachin Kumar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli Haryana 131028 India
| | - Gurdeep Rattu
- Department of Basic and Applied Science National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli Haryana 131028 India
| | - Swati Mitharwal
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli Haryana 131028 India
| | - Abhishek Chandra
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli Haryana 131028 India
| | - Sourabh Kumar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli Haryana 131028 India
| | - Aman Kaushik
- Department of Basic and Applied Science National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli Haryana 131028 India
| | - Vijendra Mishra
- Department of Basic and Applied Science National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli Haryana 131028 India
| | - Prabhat K. Nema
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli Haryana 131028 India
| |
Collapse
|
9
|
Moss R, McSweeney MB. Projective mapping as a versatile sensory profiling tool: A review of recent studies on different food products. J SENS STUD 2022. [DOI: 10.1111/joss.12743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rachael Moss
- School of Nutrition and Dietetics Acadia University Wolfville Nova Scotia Canada
| | - Matthew B. McSweeney
- School of Nutrition and Dietetics Acadia University Wolfville Nova Scotia Canada
| |
Collapse
|
10
|
Phenolics Profile, Antioxidant Activity and Flavor Volatiles of Pear Juice: Influence of Lactic Acid Fermentation Using Three Lactobacillus Strains in Monoculture and Binary Mixture. Foods 2021; 11:foods11010011. [PMID: 35010138 PMCID: PMC8750113 DOI: 10.3390/foods11010011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to evaluate the effects of lactic acid fermentation using three Lactobacillus strains (Lactiplantibacillus plantarum 90, Lactobacillus helveticus 76, and Lacticaseibacillus casei 37) in monoculture and binary mixture on phenolics profile, antioxidant activity and flavor volatiles in pear juice. Results showed that the colony counts of binary mixture were higher than monoculture in fermented pear juice. The total content of phenols was increased, while that of flavonoids was decreased significantly during fermentation (p < 0.05). Antioxidant activities in fermented peer juice including DPPH and ABTS radical scavenging abilities and ferric reducing antioxidant power (FRAP) were significantly improved (p < 0.05). Binary mixture of Lactiplantibacillus plantarum 90 and Lacticaseibacillus casei 37 fermentation exhibited strong DPPH radical scavenging ability, due to the increase in vanillic acid and arbutin contents. Furthermore, lactic acid fermentation improved the formation of alcohols, esters, acids and terpenoids, and reduced the contents of aldehydes and ketones. Thirty new compounds including 15 alcohols, seven esters, five acids, and three terpenoids were observed in fermented pear juice. Hierarchical cluster revealed that flavor volatiles in pear juice were improved dramatically by Lactobacillus strains fermentation, and there were dramatic differences between monoculture and binary mixture.
Collapse
|
11
|
The Utilisation of Acrylamide by Selected Microorganisms Used for Fermentation of Food. TOXICS 2021; 9:toxics9110295. [PMID: 34822686 PMCID: PMC8618435 DOI: 10.3390/toxics9110295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 11/03/2021] [Indexed: 12/28/2022]
Abstract
Acrylamide (AA) present in food is considered a harmful compound for humans, but it exerts an impact on microorganisms too. The aim of this study was to evaluate the impact of acrylamide (at conc. 0–10 µg/mL) on the growth of bacteria (Leuconostoc mesenteroides, Lactobacillus acidophilus LA-5) and yeasts (Saccharomyces cerevisiae, Kluyveromyces lactis var. lactis), which are used for food fermentation. Moreover, we decided to verify whether these microorganisms could utilise acrylamide as a nutritional compound. Our results proved that acrylamide can stimulate the growth of L. acidophilus and K. lactis. We have, to the best of our knowledge, reported for the first time that the probiotic strain of bacteria L. acidophilus LA-5 is able to utilise acrylamide as a source of carbon and nitrogen if they lack them in the environment. This is probably due to acrylamide degradation by amidases. The conducted response surface methodology indicated that pH as well as incubation time and temperature significantly influenced the amount of ammonia released from acrylamide by the bacteria. In conclusion, our studies suggest that some strains of bacteria present in milk fermented products can exert additional beneficial impact by diminishing the acrylamide concentration and hence helping to prevent against its harmful impact on the human body and other members of intestinal microbiota.
Collapse
|
12
|
Jouki M, Khazaei N, Rashidi-Alavijeh S, Ahmadi S. Encapsulation of Lactobacillus casei in quince seed gum-alginate beads to produce a functional synbiotic drink powder by agro-industrial by-products and freeze-drying. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106895] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Jouki M, Khazaei N, Rezaei F, Taghavian-Saeid R. Production of synbiotic freeze-dried yoghurt powder using microencapsulation and cryopreservation of L. plantarum in alginate-skim milk microcapsules. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105133] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Recent Applications of Mixture Designs in Beverages, Foods, and Pharmaceutical Health: A Systematic Review and Meta-Analysis. Foods 2021; 10:foods10081941. [PMID: 34441717 PMCID: PMC8391317 DOI: 10.3390/foods10081941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/10/2023] Open
Abstract
Design of Experiments (DoE) is a statistical tool used to plan and optimize experiments and is seen as a quality technology to achieve products excellence. Among the experimental designs (EDs), the mixture designs (MDs) stand out, being widely applied to improve conditions for processing, developing, or formulating novel products. This review aims to provide useful updated information on the capacity and diversity of MDs applications for the industry and scientific community in the areas of food, beverage, and pharmaceutical health. Recent works were selected following the Preferred Reporting Items for Systematic Review and Meta-Analyses statement (PRISMA) flow diagram. Data analysis was performed by self-organizing map (SOM) to check and understand which fields of application/countries/continents are using MDs. Overall, the SOM indicated that Brazil presented the largest number of works using MDs. Among the continents, America and Asia showed a predominance in applications with the same amount of work. Comparing the MDs application areas, the analysis indicated that works are prevalent in food and beverage science in the American continent, while in Asia, health science prevails. MDs were more used to develop functional/nutraceutical products and the formulation of drugs for several diseases. However, we briefly describe some promising research fields in that MDs can still be employed.
Collapse
|
15
|
Kantono K, Hamid N, Oey I, Wu YC, Ma Q, Farouk M, Chadha D. Effect of High Hydrostatic Pressure Processing on the Chemical Characteristics of Different Lamb Cuts. Foods 2020; 9:E1444. [PMID: 33053733 PMCID: PMC7601600 DOI: 10.3390/foods9101444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022] Open
Abstract
The non-thermal high-pressure processing (HPP) technique has been used to increase the shelf life of food without compromising their nutritional and sensory qualities. This study aims to explore the potential application of HPP on New Zealand lamb meat. In this study, the effect of HPP, at different pressure treatments (200-600 MPa) on eight different lamb meat cuts in terms of lipid oxidation, fatty acid and free amino acid content were investigated. In general treatments between 400 and 600 MPa resulted in higher oxidation values in eye of loin, flat, heel, and tenderloin cuts. Saturated and monounsaturated fatty acid content were significantly lower with HPP treatment of almost all cuts (except rump and heel cuts) at all pressures. Polyunsaturated fatty acid content was significantly lower in HPP-treated inside, knuckle, and tenderloin cuts at 600 MPa compared to control. Nine essential free amino acids (valine, leucine, isoleucine, methionine, phenylalanine, lysine, histidine, tyrosine and tryptophan), and eight non-essential free amino acids (alanine, glycine, threonine, serine, proline, aspartic acid, glutamic acids and ornithine) were identified in the lamb cuts. HPP increased the total free amino acid composition significantly compared to control at all pressures for almost all cuts except the inside and eye of loin cuts. This study suggests that higher pressure treatments (i.e., 400 and 600 MPa) resulted in higher TBARS oxidation levels. Additionally, significant decreases in saturated and monounsaturated fatty acids and increase free amino acid content were observed in the majority of HPP-treated samples compared to control.
Collapse
Affiliation(s)
- Kevin Kantono
- Department of Food Science and Microbiology, Auckland University of Technology, Auckland 1010, New Zealand; (K.K.); (Y.C.W.); (Q.M.); (D.C.)
| | - Nazimah Hamid
- Department of Food Science and Microbiology, Auckland University of Technology, Auckland 1010, New Zealand; (K.K.); (Y.C.W.); (Q.M.); (D.C.)
| | - Indrawati Oey
- Department of Food Science, University of Otago, Dunedin 9016, New Zealand;
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yan Chao Wu
- Department of Food Science and Microbiology, Auckland University of Technology, Auckland 1010, New Zealand; (K.K.); (Y.C.W.); (Q.M.); (D.C.)
| | - Qianli Ma
- Department of Food Science and Microbiology, Auckland University of Technology, Auckland 1010, New Zealand; (K.K.); (Y.C.W.); (Q.M.); (D.C.)
- AgResearch MIRINZ, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand;
| | - Mustafa Farouk
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand;
| | - Diksha Chadha
- Department of Food Science and Microbiology, Auckland University of Technology, Auckland 1010, New Zealand; (K.K.); (Y.C.W.); (Q.M.); (D.C.)
| |
Collapse
|
16
|
Abstract
Consumer demands for foods promoting health while preventing diseases have led to development of functional foods that contain probiotic bacteria. Fermented dairy products are good substrates for probiotic delivery, but the large number of lactose intolerant people, their high fat and cholesterol content and also due to the growing vegetarianism the consumers are seeking for alternatives. Therefore, researches have been widely studied the feasibility of probiotic bacteria in non-dairy products such as fruits, vegetables, and cereals. This review describes the application of probiotic cultures in non-dairy food products.
Collapse
|
17
|
In Vitro Probiotic Properties and DNA Protection Activity of Yeast and Lactic Acid Bacteria Isolated from A Honey-Based Kefir Beverage. Foods 2019; 8:foods8100485. [PMID: 31614798 PMCID: PMC6835213 DOI: 10.3390/foods8100485] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 01/20/2023] Open
Abstract
The probiotic characteristics of three acid-tolerant microbial strains, viz.,Lactobacillus satsumensis LPBF1, Leuconostoc mesenteroides LPBF2 and Saccharomyes cerevisiae LPBF3, isolated from a honey-based kefir functional beverage, were studied following the requirements established by the Food and Agriculture Organization of the United Nation/World Health Organization (FAO/WHO), including host-associated stress resistance, epithelium adhesion ability, and antimicrobial activity. The three microbial strains tolerated different pH values (2.0, 3.0, 4.0 and 7.0) and bile salt concentrations (0.3% and 0.6%), and survive in the presence of simulated gastric juice, which are conditions imposed by the gastrointestinal tract. In addition, they showed high percentages of hydrophobicity, auto aggregation and anti-pathogenic against Escherichia coli and Staphylococcus aureus, with no hemolytic activity. The protective capacity of human DNA through microbial treatment was investigated by single-cell gel electrophoresis (SCGE) comet assay. The three selected strains showed DNA protection effect against damage caused by hydroxyl radical (H2O2). However, when the S. cerevisiae treatment was applied, the most effective DNA protection index was observed, which can be associated to its high production of extracellular antioxidants as reveled by the 2,2-diphenyl-1-picryl-hydrazylhydrate (DPPH) method. These results indicated that the three selected microbial strains could be useful for preventing oxidative DNA damage and cellular oxidation in food products. As well-adapted microbial cells, the selected strains can be used for production of non-dairy functional beverages, especially for vegans and/or vegetarians and lactose intolerants.
Collapse
|