1
|
Mudau F, Durunna O, Mapiye C, Semwogerere F, Hagg F, Raffrenato E, Molotsi A. Insights into garlic (Allium Sativum)'s nutrigenomics-associated fly-repellent potency in cattle. Trop Anim Health Prod 2025; 57:154. [PMID: 40178647 PMCID: PMC11968492 DOI: 10.1007/s11250-025-04406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/21/2025] [Indexed: 04/05/2025]
Abstract
Despite effective control of flies using synthetic pesticides, fly resistance and environmental contamination have led to the inadequacy of this strategy. The use of integrated pest management approaches has since been advocated in contemporary research to sustainably control fly populations. Recent studies have found garlic (Allium Sativum) and its derivative bioactive compounds to possess insect-repellent attributes among other key health and production enhancing properties. This highlights the potential of garlic as a botanical pesticide to control flies in cattle. Moreover, the ability of cattle to naturally repel flies is influenced by animal genetic predisposition. The dietary garlic supplementation and gene interaction in disease resistance could also be an influential factor in repelling flies in cattle. Transcriptomics has emerged as a valuable tool in animal breeding and genetics which allows identification of trait-associated genes and understanding of complex interactions between dietary nutrients and animal genome expression. This paper explores the nutrigenomic effects of garlic supplementation on cattle and its contribution towards fly repellence efficacy in cattle. It was concluded that garlic supplementation in cattle diets could offer a sustainable approach to managing fly infestations in cattle farming. These findings underscore the importance of further research to validate these assertions and optimise the use of garlic to control flies in cattle under different production systems.
Collapse
Affiliation(s)
- Fhulufhelo Mudau
- Department of Animal Sciences, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa.
| | - Obioha Durunna
- Department of Applied Research, Lakeland College, Vermilion, AB, T9X 1K5, Canada
| | - Cletos Mapiye
- Department of Animal Sciences, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa
| | - Farouk Semwogerere
- Department of Animal Sciences, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa
- Animal Resources Research Program, Abi Zonal Agricultural Research and Development Institute (Abi ZARDI). National Agricultural Research Organization, P. O. Box 219, Arua, Uganda
| | - Frans Hagg
- Allied Nutrition, Centurion, 0157, South Africa
| | - Emiliano Raffrenato
- Department of Animal Sciences, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa
| | - Annelin Molotsi
- Department of Animal Sciences, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa
- Department of Agriculture and Animal Health, University of South Africa, PO Box 392, Johannesburg, 0003, South Africa
| |
Collapse
|
2
|
Shagun S, Bains A, Sridhar K, Dhull SB, Patil S, Gupta VK, Chawla P, Sharma M. A comprehensive review on impact of post-harvest management and treatment practices on the quality of garlic (Allium sativum L) during storage. SCIENTIA HORTICULTURAE 2024; 337:113586. [DOI: 10.1016/j.scienta.2024.113586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Boutaj H. A Comprehensive Review of Moroccan Medicinal Plants for Diabetes Management. Diseases 2024; 12:246. [PMID: 39452489 PMCID: PMC11507334 DOI: 10.3390/diseases12100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Moroccan flora, renowned for its diverse medicinal plant species, has long been used in traditional medicine to manage diabetes. This review synthesizes ethnobotanical surveys conducted during the last two decades. Among these plants, 10 prominent Moroccan medicinal plants are evaluated for their phytochemical composition and antidiabetic properties through both in vitro and in vivo studies. The review encompasses a comprehensive analysis of the bioactive compounds identified in these plants, including flavonoids, phenolic acids, terpenoids, and alkaloids. Phytochemical investigations revealed a broad spectrum of secondary metabolites contributing to their therapeutic efficacy. In vitro assays demonstrated the significant inhibition of key enzymes α-amylase and α-glucosidase, while in vivo studies highlighted their potential in reducing blood glucose levels and enhancing insulin secretion. Among the ten plants, notable examples include Trigonella foenum-graecum, Nigella Sativa, and Artemisia herba-alba, each showcasing distinct mechanisms of action, such as enzymatic inhibition and the modulation of glucose metabolism pathways. This review underscores the necessity for further chemical, pharmacological, and clinical research to validate the antidiabetic efficacy of these plants and their active compounds, with a view toward their potential integration into therapeutic practices.
Collapse
Affiliation(s)
- Hanane Boutaj
- Laboratory of Life and Health Sciences, FMP, Abdelmalek Essaadi University, Tetouan 93000, Morocco;
- Centre d’Agrobiotechnologie et de Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Équipe “Physiologie des Stress Abiotiques”, Faculté de Sciences et Tecchniques, Université Cadi Ayyad, Marrakesh 40000, Morocco
| |
Collapse
|
4
|
Mohammadzadeh A, Gol A, Kheirandish R. Effects of garlic (Allium sativum L) and Citrullus colocynthis (L.) Schrad individually and in combination on male reproductive damage due to diabetes: suppression of the AGEs/RAGE/Nox-4 signaling pathway. BMC Complement Med Ther 2024; 24:149. [PMID: 38581015 PMCID: PMC10996167 DOI: 10.1186/s12906-024-04402-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/14/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Diabetes Mellitus is associated with disturbances in male reproductive function and fertility. Studies have shown that oxidative stress with the subsequent inflammation and apoptosis cause these complications in diabetes. Garlic (G) (Allium sativum L) and Citrullus colocynthis (L.) Schrad (C) both have antidiabetic and antioxidant properties. Recently, we demonstrated their synergistic effects in alleviating reproductive complications when administered concomitantly. However, as even medicinal plants in long term usage may lead to some unwanted side effects of their own, we examined whether with half the original doses of these two medicinal plants we could achieve the desired results. METHODS Thirty-five male Wistar rats were divided into five groups (n = 7/group): Control, Diabetic, Diabetic + G (0.5 ml/100 g BW), Diabetic + C (5 mg/kg BW) and Diabetic + GC (0.5 ml/100 g BW of garlic and 5 mg/kg BW of C. colocynthis) groups. The experimental period was 30 days. RESULTS Oxidative stress, advanced glycation end products (AGEs), immunoexpression of caspase-3, and expression of mRNAs for receptor for advanced glycation end products (RAGE), NADPH oxidase-4 (NOX-4) and nuclear factor kappa B increased in testis of diabetic rats. Treatment with garlic and C. colocynthis alone showed some beneficial effects, but in the combination form the effectiveness was more profound. CONCLUSIONS We conclude that the combination therapy of diabetic rats with lower doses is still as efficient as higher doses; therefore, the way forward for reducing complications in long term consumption.
Collapse
Affiliation(s)
- Aghileh Mohammadzadeh
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ali Gol
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Reza Kheirandish
- Department of Pathobiology, Veterinary Faculty, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
5
|
Zhang X, Yang SB, Cheng L, Ho K, Kim MS. Botanical Mixture Containing Nitric Oxide Metabolite Enhances Neural Plasticity to Improve Cognitive Impairment in a Vascular Dementia Rat Model. Nutrients 2023; 15:4381. [PMID: 37892455 PMCID: PMC10609983 DOI: 10.3390/nu15204381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Vascular dementia (VD), caused by impaired cerebral blood flow, is the most common form of dementia after Alzheimer's disease (AD) in the elderly and is characterized by severe neuronal damage and cognitive decline. Nitric oxide (NO) is an important determinant of vascular homeostasis, and its deficiency is associated with the progression of VD. In this study, we investigated the role of nitrite ion, a NO metabolite in a botanical mixture (BM) of fermented garlic, fermented Scutellaria baicalensis, and Rhodiola rosea on neuron loss and cognitive impairment using a VD rat model. The BM containing the NO metabolite alleviated cognitive deficits and enhanced neural plasticity, as reflected by an increase in long-term potentiation. The BM also alleviated neuron apoptosis, decreased GFAP expression, and oxidative stress, and increased parvalbumin and brain-derived neurotrophic factor (BDNF) levels. These results indicate that BM exerts neuroprotective effects and alleviates cognitive dysfunction while enhancing neuroplasticity, and thus has therapeutic potential against VD.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
- Center for Cognitive Science and Transdisciplinary Studies, Jiujiang University, Jiujiang 332000, China
- Center for Nitric Oxide Metabolite, Wonkwang University, Iksan 54538, Republic of Korea
| | - Seung-Bum Yang
- Department of Medical Non-Commissioned Officer, Wonkwang Health Science University, Iksan 54538, Republic of Korea
| | - Lin Cheng
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, China
| | - Koo Ho
- Center for Nitric Oxide Metabolite, Wonkwang University, Iksan 54538, Republic of Korea
| | - Min-Sun Kim
- Center for Nitric Oxide Metabolite, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
6
|
Ding H, Ao C, Zhang X. Potential use of garlic products in ruminant feeding: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:343-355. [PMID: 37635929 PMCID: PMC10448032 DOI: 10.1016/j.aninu.2023.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 01/23/2023] [Accepted: 04/06/2023] [Indexed: 08/29/2023]
Abstract
The addition of antibiotics as growth promoters to ruminant feed can result in bacterial resistance and antibiotic residues in ruminant products. Correspondingly, there is serious public concern regarding the presence of antibiotic residue in ruminant products and the consequent threat to human health. As a result, the addition of plants and their products to ruminant feeds, as an alternative to antibiotics, has received much attention recently. Garlic and its products are rich in organosulphur compounds, which have a variety of biological activities and have been widely used as natural additives in animal production. This review presents recent knowledge on the addition of garlic products (powder, skin, oil, leaf and extracts) to the diets of ruminants. In this paper, garlic products are evaluated with respect to their chemical composition, bioactive compounds, and their impacts on the rumen ecosystem, antioxidant status, immune response, parasitic infection, growth performance and product quality of ruminants. This review provides valuable guidance and a theoretical basis for the development of garlic products as green, highly efficient and safe additives, with the aims of promoting ruminant growth and health, reducing methane emissions and improving ruminant product quality. Garlic extracts have the potential to control parasite infections by decreasing the faecal egg count. Garlic powder, oil and allicin are able to reduce the methane emissions of ruminants. Organosulphur compounds such as allicin, which is present in garlic products, have the potential to inhibit membrane lipid synthesis of the archaeal community, thus influencing the population of methanogenic archaea and resulting in a reduction in methane emissions. Some garlic products are also able to increase the average daily gain (garlic skin, water extract, and leaf) and the feed conversion ratio (garlic skin and leaf) of ruminants. Garlic stalk silage fed to sheep has the potential to improve the nutritional value of mutton by increasing the concentrations of linoleic and linolenic acids and essential amino acids. Sheep fed a diet containing garlic powder or oil are able to produce milk with higher concentrations of the conjugated linoleic acids and n-3 fatty acids, which has health benefits for consumers, due to the widely recognized positive impact of n-3 polyunsaturated fatty acids and conjugated linoleic acids on human heart health, improving platelet aggregation, vasodilation and thrombotic tendency. Overall, garlic products have the potential to enhance growth performance and product quality and reduce parasite infections, as well as methane emissions of ruminants.
Collapse
Affiliation(s)
- He Ding
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Changjin Ao
- Key Laboratory of Animal Feed and Nutrition of Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaoqing Zhang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| |
Collapse
|
7
|
Burgos-Pino J, Gual-Orozco B, Vera-Ku M, Loría-Cervera EN, Guillermo-Cordero L, Martínez-Vega PP, Torres-Tapia LW, Castro-Valencia K, Peraza-Sánchez SR, Gamboa-León R. Acute oral toxicity in BALB/c mice of Tridax procumbens and Allium sativum extracts and (3S)-16,17-didehydrofalcarinol. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115840. [PMID: 36257342 DOI: 10.1016/j.jep.2022.115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Approximately 80% of people in developing countries depend on medicinal plants for their health care. Tridax procumbens (T. procumbens) and Allium sativum (A. sativum) have beneficial effects against parasitic and bacterial diseases. On the other side, the biological activity of the oxylipin (3S)-16,17-didehydrofalcarinol isolated from T. procumbens against the parasite Leishmania mexicana has been verified. AIM OF THE STUDY To evaluate the acute oral toxicity of the methanolic extract of T. procumbens, the aqueous extract of A. sativum, their mixture, and pure oxylipin (3S)-16,17-didehydrofalcarinol in BALB/c mice. MATERIALS AND METHODS Doses of 2000 and 5000 mg/kg of the methanolic extract of T. procumbens, the aqueous extract of A. sativum, and their mixture (1:1), and doses of 300 and 500 mg/kg of pure oxylipin were administered orally to female mice of the strain BALB/c, which were observed for 72 h in search of signs of toxicity. After 14 days, the animals were euthanized, blood was extracted for the measurement of transaminases, and the livers were recovered and stained with hematoxylin/eosin for histopathological analysis. RESULTS No clinical signs of toxicity were observed in any of the animals dosed with T. procumbens and A. sativum extracts, while the majority of the animals dosed with pure oxylipin showed signs of toxicity and died. There was no difference in the weight index in most of the animals, except for the animals treated with T. procumbens at doses of 2000 mg/kg who presented an increase in the weight index, nor was there a correlation between the dose of A. sativum and the mixture and food consumption; however, a direct proportional correlation was observed between T. procumbens dose and food consumption. In none of the animals dosed with T. procumbens, A. sativum, and the mixture there was a difference in the levels of transaminases. In the histopathology study, slight lesions were observed in the hepatocytes of the mice treated with T. procumbens, A. sativum, and their mixture at doses of 2000 and 5000 mg/kg. On the other side, moderate injuries were observed in animals treated with pure oxylipin and it was considered as toxic due to almost all the animals died. CONCLUSION The extracts of T. procumbens and A. sativum evaluated and applied orally did not cause signs of acute toxicity or severe liver damage, suggesting to evaluate their chronic toxicity including other biochemical parameters in the future. However, pure oxylipin caused signs of acute toxicity and death so it is recommended to work with lower doses.
Collapse
Affiliation(s)
- Janelly Burgos-Pino
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil Km. 15.5 Tizapán, 97100, Mérida, Yucatán, Mexico.
| | - Brandon Gual-Orozco
- CONACYT-GERMOLAB/Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| | - Marina Vera-Ku
- CONACYT-GERMOLAB/Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| | - Elsy Nalleli Loría-Cervera
- Laboratorio de Inmunología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Av. Itzaes por 59, No. 490, Centro, 97000, Mérida, Yucatán, Mexico.
| | - Leonardo Guillermo-Cordero
- Cuerpo Académico en Salud Animal de la Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil Km. 15.5 Tizapán, 97100, Mérida, Yucatán, Mexico.
| | - Pedro Pablo Martínez-Vega
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Av. Itzaes por 59, No. 490, Centro, 97000, Mérida, Yucatán, Mexico.
| | - Luis W Torres-Tapia
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| | - Karla Castro-Valencia
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| | - Sergio R Peraza-Sánchez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| | - Rubi Gamboa-León
- Laboratorio de Ciencias Biomédicas, Coordinación Académica Región Huasteca Sur, Universidad Autónoma de San Luis Potosí, Km. 5 Carretera Tamazunchale-San Martin, 79960, Tamazunchale, San Luis Potosí, Mexico.
| |
Collapse
|
8
|
Abdel Ghfar SS, Ali ME, Momenah MA, Al-Saeed FA, Al-Doaiss AA, Mostafa YS, Ahmed AE, Abdelrahman M. Effect of Allium sativum and Nigella sativa on alleviating aluminum toxicity state in the albino rats. Front Vet Sci 2022; 9:1042640. [PMID: 36524230 PMCID: PMC9745150 DOI: 10.3389/fvets.2022.1042640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/25/2022] [Indexed: 12/02/2022] Open
Abstract
The study objective was to evaluate Allium sativum's potential and Nigella Sativa's combination's potential to reduce aluminum toxicity and return to the normal state. In the present study, a hundred albino rats were randomly divided into five equal groups. The first group was used as a control group; the other four groups were exposed to aluminum 1,600 ppm. The second exposed to aluminum only; the third and fourth groups were treated with Allium sativum 5% and Nigella sativa 5%, respectively, while the fifth group was treated with a mix of Allium sativum 2.5% and Nigella sativa 2.5% for 8th weeks. After 8 weeks, the aluminum administration was stopped, and the second group was divided into three groups. The groups were treated with Allium sativum 5% and Nigella sativa 5%, and a mix of Allium sativum 2.5% and Nigella sativa 2.5%, respectively. The first group was the control group (continued from the first experiment). Garlic and Nigella sativa were crushed and added to feed while receiving aluminum chloride daily at a dose of 1.6 ml/l was added to the drinking water. Histopathological changes in the liver, kidney, and testes were investigated after 8 and 16 weeks, and blood samples were collected after 4, 8, and 16 weeks for biochemical blood parameters. The results showed that the histopathological examination of the liver, kidney, and testes showed signs of congestion in blood vessels after aluminum exposure. Meanwhile, the treatment with Allium sativum or Nigella sativum or the mixture between them had positive effects on evading the harmful effects of aluminum in the liver, Kidney, and testes tissues. In addition, there were protective effects for Allium sativum and Nigella sativa against aluminum on serum creatinine, urea, ALT, and AST concentrations. The present study concluded that supplementation with Allium sativum or Nigella sativa or their combination could reduce aluminum toxicity and return the liver, kidney, and testes to normal.
Collapse
Affiliation(s)
| | - Montaser Elsayed Ali
- Department of Animal Productions, Faculty of Agriculture, Al-Azhar University, Assiut, Egypt
| | - Maha Abdullah Momenah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fatimah A. Al-Saeed
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Amin A. Al-Doaiss
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Yasser Sabry Mostafa
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Theriogenology, Obstetrics, and Artificial Insemination, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Mohamed Abdelrahman
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Animal Production Department, Faculty of Agriculture, Assiut University, Asyut, Egypt
| |
Collapse
|
9
|
Ethnonursing Study of Pain Management in Neonates in Pangandaran, West Java, Indonesia. Pain Manag Nurs 2022; 24:350-356. [DOI: 10.1016/j.pmn.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2022] [Accepted: 10/09/2022] [Indexed: 11/19/2022]
|
10
|
Yang K, Yu Z, Gu F, Zhang Y, Wang S, Peng B, Hu Z. Experimental Study of Garlic Root Cutting Based on Deep Learning Application in Food Primary Processing. Foods 2022. [PMCID: PMC9601357 DOI: 10.3390/foods11203268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Garlic root cutting is generally performed manually; it is easy for the workers to sustain hand injuries, and the labor efficiency is low. However, the significant differences between individual garlic bulbs limit the development of an automatic root cutting system. To address this problem, a deep learning model based on transfer learning and a low-cost computer vision module was used to automatically detect garlic bulb position, adjust the root cutter, and cut garlic roots on a garlic root cutting test bed. The proposed object detection model achieved good performance and high detection accuracy, running speed, and detection reliability. The visual image of the output layer channel of the backbone network showed the high-level features extracted by the network vividly, and the differences in learning of different networks clearly. The position differences of the cutting lines predicted by different backbone networks were analyzed through data visualization. The excellent and stable performance indicated that the proposed model had learned the correct features in the data of different brightness. Finally, the root cutting system was verified experimentally. The results of three experiments with 100 garlic bulbs each indicated that the mean qualified value of the system was 96%. Therefore, the proposed deep learning system can be applied in garlic root cutting which belongs to food primary processing.
Collapse
Affiliation(s)
- Ke Yang
- Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Zhaoyang Yu
- Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Key Laboratory of Modern Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Fengwei Gu
- Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Yanhua Zhang
- Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Shenying Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Peng
- Key Laboratory of Modern Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Correspondence: (B.P.); (Z.H.)
| | - Zhichao Hu
- Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Correspondence: (B.P.); (Z.H.)
| |
Collapse
|
11
|
Bar M, Binduga UE, Szychowski KA. Methods of Isolation of Active Substances from Garlic ( Allium sativum L.) and Its Impact on the Composition and Biological Properties of Garlic Extracts. Antioxidants (Basel) 2022; 11:1345. [PMID: 35883836 PMCID: PMC9312217 DOI: 10.3390/antiox11071345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
Garlic (Allium sativum L.) is widely used in the human diet and in scientific research due to its biological properties. Various factors, e.g., temperature, pressure, extraction method, type of solvent, size, and territorial origin of garlic, affect the amount and type of bioactive compounds obtained from garlic extracts. In turn, the content of bioactive compounds correlates with the biological activity of the extracts. Therefore, the aim of this review was to summarize the current state of knowledge of the methods and effectiveness of isolation of active substances from garlic and their impact on the garlic extract composition and, consequently, biological properties. According to the literature, extracts obtained using water as a solvent are mainly responsible for antimicrobial properties, which is related to, inter alia, the high content of allicin. The use of alcohols, such as methanol or ethanol, is associated with the outstanding antioxidant power of extracts resulting from the presence of phenolic compounds. In turn, due to the presence of diallyl disulfide and disulfide trisulfide, garlic oil has anticancer potential. Acetone is the most effective organic solvent; however, it is not suitable for immediate consumption.
Collapse
Affiliation(s)
- Monika Bar
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland;
| | - Urszula E. Binduga
- Department of Lifestyle Disorders and Regenerative Medicine, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland;
| | - Konrad A. Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland;
| |
Collapse
|
12
|
Lu Y, Zhang M, Huang D. Dietary Organosulfur-Containing Compounds and Their Health-Promotion Mechanisms. Annu Rev Food Sci Technol 2022; 13:287-313. [DOI: 10.1146/annurev-food-052720-010127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary organosulfur-containing compounds (DOSCs) in fruits, vegetables, and edible mushrooms may hold the key to the health-promotion benefits of these foods. Yet their action mechanisms are not clear, partially due to their high reactivity, which leads to the formation of complex compounds during postharvest processing. Among postharvest processing methods, thermal treatment is the most common way to process these edible plants rich in DOSCs, which undergo complex degradation pathways with the generation of numerous derivatives over a short time. At low temperatures, DOSCs are biotransformed slowly during fermentation to different metabolites (e.g., thiols, sulfides, peptides), whose distinctive biological activity remains largely unexplored. In this review, we discuss the bioavailability of DOSCs in human digestion before illustrating their potential mechanisms for health promotion related to cardiovascular health, cancer chemoprevention, and anti-inflammatory and antimicrobial activities. In particular, it is interesting that different DOSCs react with glutathione or cysteine, leading to the slow release of hydrogen sulfide (H2S), which has broad bioactivity in chronic disease prevention. In addition, DOSCs may interact with protein thiol groups of different protein targets of importance related to inflammation and phase II enzyme upregulation, among other action pathways critical for health promotion. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yuyun Lu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Molan Zhang
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Dejian Huang
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Jiangsu, China
| |
Collapse
|
13
|
Ebadi Z, Ghaisari H, Tajeddin B, Shekarforoush SS. Evaluation of the properties and antibacterial activity of microchitosan film impregnated with Shirazi thyme ( Zataria multiflora) and garlic ( Allium sativum) essential oils. IRANIAN JOURNAL OF VETERINARY RESEARCH 2022; 23:53-60. [PMID: 35782351 PMCID: PMC9238934 DOI: 10.22099/ijvr.2021.38534.5609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 08/20/2021] [Accepted: 11/06/2021] [Indexed: 06/15/2023]
Abstract
Background Recent research has shown that chitosan has good moisture-absorbing properties at the micro and nanoscale, and seems to be a good candidate for the production of biodegradable moisture-absorbing films. Aims The aim of this study was to evaluate the properties and antibacterial activity of starch-based microchitosan (MCH) films impregnated with two essential oils (EOs). Methods MCH films with varying thicknesses were made from cornstarch (6%), microchitosan (1%), glycerol (2.25%), and/or EOs (2%), and their characteristics, including swelling degree (SD), tensile strength (TS), and elongation at break (EB%), were examined. The film structures were confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). To determine the antibacterial activity against Escherichia coli and Staphylococcus aureus, two EOs of Shirazi thyme, garlic, and a mixture of them were used in the experimentation. Results The EB% and TS had a linear relationship with the thickness of samples and improved by increasing the thickness of films. The XRD pattern showed that the MCH films had an amorphous structure. SEM of the films showed a homogeneous dispersion of MCH in the starch matrix without any porosity. The AFM images showed a simultaneous increase in the thickness of the MCH films and surface roughness. The film was able to absorb water up to 15.78 times its weight in 48 h. The inhibition zone of films containing 2% thyme EO was 42.0 mm for S. aureus and 12.3 mm for E. coli (P<0.05). Conclusion MCH film containing Shirazi thyme can be described as a moisture-absorbing antibacterial pad and is a new idea for active food packaging to increase the shelf life of foods with fully degradable properties.
Collapse
Affiliation(s)
- Z. Ebadi
- Ph.D. Student in Food Hygiene, Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran, and Animal Science Research Institute (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran (current address)
| | - H. Ghaisari
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - B. Tajeddin
- Agricultural Engineering Research Institute (AERI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - S. S. Shekarforoush
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
14
|
Lu X, Wang C, Zhao M, Wu J, Niu Z, Zhang X, Simal-Gandara J, Süntar I, Jafari SM, Qiao X, Tang X, Han Z, Xiao J, Ningyang L. Improving the bioavailability and bioactivity of garlic bioactive compounds via nanotechnology. Crit Rev Food Sci Nutr 2021; 62:8467-8496. [PMID: 34058922 DOI: 10.1080/10408398.2021.1929058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This review highlights main bioactive compounds and important biological functions especially anticancer effects of the garlic. In addition, we review current literature on the stability and bioavailability of garlic components. Finally, this review aims to provide a potential strategy for using nanotechnology to increase the stability and solubility of garlic components, providing guidelines for the qualities of garlic products to improve their absorption and prevent their early degradation, and extend their circulation time in the body. The application of nanotechnology to improve the bioavailability and targeting of garlic compounds are expected to provide a theoretical basis for the functional components of garlic to treat human health. We review the improvement of bioavailability and bioactivity of garlic bioactive compounds via nanotechnology, which could promisingly overcome the limitations of conventional garlic products, and would be used to prevent and treat cancer and other diseases in the near future.
Collapse
Affiliation(s)
- Xiaoming Lu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chaofan Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Meng Zhao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jinxiang Wu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhonglu Niu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xueli Zhang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Ourense, Spain
| | - Ipek Süntar
- Deparment of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara, Turkey
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiaozhen Tang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhenlin Han
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Li Ningyang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
15
|
Juan-García A, Agahi F, Drakonaki M, Tedeschi P, Font G, Juan C. Cytoprotection assessment against mycotoxins on HepG2 cells by extracts from Allium sativum L. Food Chem Toxicol 2021; 151:112129. [PMID: 33737112 DOI: 10.1016/j.fct.2021.112129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Cytoprotection effects of Allium sativum L garlic extract from a local garlic ecotype from Ferrara (Italy) on hepatocarcinoma cells, HepG2 cells, is presented in this study. This garlic type is known as Voghiera garlic and has been characterized as PDO (Protected designation of Origin) product. Voghiera garlic extract (VGE) was evaluated against beauvericin (BEA) and two zearalenone (ZEA) metabolites (α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL))-induced cytotoxicity on HepG2 cells by the MTT (3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, over 24 h and 48 h. Direct treatment, simultaneous treatment and pre-treatment strategies at the dilution 1:16-1:00 for VGE and at the concentration range from 0.08 to 2.5 μM for BEA and from 1.6 to 50 μM for both α-ZEL and β-ZEL were tested. Individual IC50 values were detected at all times assayed for BEA (>0.75 μM) and VGE (dilution upper 1:8) while this was not observed for ZEA's metabolites. When simultaneous strategy of VGE + mycotoxin was tested, cytoprotection with increases of viability (upper 50%) were observed. Lastly, in pre-treatment strategy with VGE, viability of HepG2 cells was significantly protected when α-ZEL was tested. As a result, the greatest cytoprotective effect of VGE in HepG2 cells is obtained when simultaneous treatment strategy was performed.
Collapse
Affiliation(s)
- Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| | - Fojan Agahi
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Maria Drakonaki
- Department of Food Technology, Faculty of Food Technology and Nutrition, University of West Attica, Greece
| | - Paola Tedeschi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121, Ferrara, Italy
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| |
Collapse
|
16
|
De Greef D, Barton EM, Sandberg EN, Croley CR, Pumarol J, Wong TL, Das N, Bishayee A. Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Semin Cancer Biol 2020; 73:219-264. [PMID: 33301861 DOI: 10.1016/j.semcancer.2020.11.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Vegetables of the Allium genus, such as garlic (Allium sativum L.), onions, shallots, leaks, and chives, have been used for many years for food consumption and for medicinal purposes. Historical medical texts have indicated the therapeutic applications of garlic as an antitumor, laxative, diuretic, antibacterial and antifungal agent. Specifically, garlic's antitumor abilities have been traced back 3500 years as a chemotherapeutic agent used in Egypt. Other beneficial effects of garlic consumption include lowering blood pressure, blood cholesterol, sugar and lipids. The processing and aging of garlic result in the production of non-toxic organosulfur by-products. These sulfur-containing compounds, such as allicin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, alliin, S-allylcysteine, and S-allylmercaptocysteine, impact various stages of carcinogenesis. The anticancer mechanisms of action of these garlic-derived phytochemicals include altering mitochondrial permeability, inhibiting angiogenesis, enhancing antioxidative and proapoptotic properties, and regulating cell proliferation. All these effects of garlic's sulfur-compounds have been demonstrated in various human cancers. The intent of this literature research is to explore the potential of garlic-derived products and bioactive organosulfur compounds as cancer chemopreventive and chemotherapeutic agents. This investigation employs criteria for systematic review and critically analyzes published in vitro, in vivo and clinical studies. Concerns and limitations that have arisen in past studies regarding standards of measurement, bioavailability, and method of delivery are addressed. Overall, it is hoped that through this systematic and comprehensive review, future researchers can be acquainted with the updated data assembled on anticancer properties of garlic and its phytoconstituents.
Collapse
Affiliation(s)
| | - Emily M Barton
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Elise N Sandberg
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | | | - Joshua Pumarol
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Tin Lok Wong
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799 155, Tripura, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
17
|
Hosseinzadeh-Attar MJ, Alipoor E, Dehghani S, Salimzadeh A. Increased efficacy of a garlic supplement on knee osteoarthritis symptoms in patients with obesity. J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Arteaga-Badillo DA, Portillo-Reyes J, Vargas-Mendoza N, Morales-González JA, Izquierdo-Vega JA, Sánchez-Gutiérrez M, Álvarez-González I, Morales-González Á, Madrigal-Bujaidar E, Madrigal-Santillán E. Asthma: New Integrative Treatment Strategies for the Next Decades. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:438. [PMID: 32872366 PMCID: PMC7558718 DOI: 10.3390/medicina56090438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Asthma is a chronic disease whose main anatomical-functional alterations are grouped into obstruction, nonspecific bronchial hyperreactivity, inflammation and airway remodeling. Currently, the Global Initiative of Asthma 2020 (GINA 2020) suggests classifying it into intermittent cases, slightly persistent, moderately persistent and severely persistent, thus determining the correct guidelines for its therapy. In general, the drugs used for its management are divided into two groups, those with a potential bronchodilator and the controlling agents of inflammation. However, asthmatic treatments continue to evolve, and notable advances have been made possible in biological therapy with monoclonal antibodies and in the relationship between this disease and oxidative stress. This opens a new path to dietary and herbal strategies and the use of antioxidants as a possible therapy that supports conventional pharmacological treatments and reduces their doses and/or adverse effects. This review compiles information from different published research on risk factors, pathophysiology, classification, diagnosis and the main treatments; likewise, it synthesizes the current evidence of herbal medicine for its control. Studies on integrative medicine (IM) therapies for asthmatic control are critically reviewed. An integrative approach to the prevention and management of asthma warrants consideration in clinical practice. The intention is to encourage health professionals and scientists to expand the horizons of basic and clinical research (preclinical, clinical and integrative medicine) on asthma control.
Collapse
Affiliation(s)
- Diego A. Arteaga-Badillo
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico; (D.A.A.-B.); (J.P.-R.); (J.A.I.-V.); (M.S.-G.)
| | - Jacqueline Portillo-Reyes
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico; (D.A.A.-B.); (J.P.-R.); (J.A.I.-V.); (M.S.-G.)
| | - Nancy Vargas-Mendoza
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico; (N.V.-M.); (J.A.M.-G.)
| | - José A. Morales-González
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico; (N.V.-M.); (J.A.M.-G.)
| | - Jeannett A. Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico; (D.A.A.-B.); (J.P.-R.); (J.A.I.-V.); (M.S.-G.)
| | - Manuel Sánchez-Gutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico; (D.A.A.-B.); (J.P.-R.); (J.A.I.-V.); (M.S.-G.)
| | - Isela Álvarez-González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico;
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico; (N.V.-M.); (J.A.M.-G.)
| |
Collapse
|
19
|
Izquierdo-Vega JA, Arteaga-Badillo DA, Sánchez-Gutiérrez M, Morales-González JA, Vargas-Mendoza N, Gómez-Aldapa CA, Castro-Rosas J, Delgado-Olivares L, Madrigal-Bujaidar E, Madrigal-Santillán E. Organic Acids from Roselle ( Hibiscus sabdariffa L.)-A Brief Review of Its Pharmacological Effects. Biomedicines 2020; 8:100. [PMID: 32354172 PMCID: PMC7277581 DOI: 10.3390/biomedicines8050100] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023] Open
Abstract
Roselle (Hibiscus sabdariffa L.), also known as jamaica in Spanish, is a perennial plant that grows in tropical and subtropical regions, including China, Egypt, Indonesia, Mexico, Nigeria, Thailand, and Saudi Arabia. It has a long history of uses, mainly focused on culinary, botanical, floral, cosmetic, and medicinal uses. The latter being of great impact due to the diuretic, choleretic, analgesic, antitussive, antihypertensive, antimicrobial, immunomodulatory, hepatoprotective, antioxidant, and anti-cancer effects. These therapeutic properties have been attributed to the bioactive compounds of the plant, mainly phenolic acids, flavonoids, anthocyanins, and organic acids (citric, hydroxycitric, hibiscus, tartaric, malic, and ascorbic). Most literature reviews and meta-analyses on the therapeutic potential of Hibiscus sabdariffa L. (Hs) compounds have not adequately addressed the contributions of its organic acids present in the Hs extracts. This review compiles information from published research (in vitro, in vivo, and clinical studies) on demonstrated pharmacological properties of organic acids found in Hs. The intent is to encourage and aid researchers to expand their studies on the pharmacologic and therapeutic effects of Hs to include assessments of the organic acid components.
Collapse
Affiliation(s)
- Jeannett A. Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla 42080, Mexico
| | - Diego A. Arteaga-Badillo
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla 42080, Mexico
| | - Manuel Sánchez-Gutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla 42080, Mexico
| | - José A. Morales-González
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
| | - Nancy Vargas-Mendoza
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
| | - Carlos A. Gómez-Aldapa
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Pachuca de Soto 42184, Mexico
| | - Javier Castro-Rosas
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Pachuca de Soto 42184, Mexico
| | - Luis Delgado-Olivares
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla 42080, Mexico
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico
| | - Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
| |
Collapse
|
20
|
Quesada I, de Paola M, Torres-Palazzolo C, Camargo A, Ferder L, Manucha W, Castro C. Effect of Garlic’s Active Constituents in Inflammation, Obesity and Cardiovascular Disease. Curr Hypertens Rep 2020; 22:6. [DOI: 10.1007/s11906-019-1009-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|