1
|
Sun Y, Liang J, Zhang Z, Sun D, Li H, Chen L. Extraction, physicochemical properties, bioactivities and application of natural sweeteners: A review. Food Chem 2024; 457:140103. [PMID: 38905824 DOI: 10.1016/j.foodchem.2024.140103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Natural sweeteners generally refer to a sweet chemical component directly extracted from nature or obtained through appropriate modifications, mainly secondary metabolites of plants. Compared to the first-generation sweeteners represented by sucrose and the second-generation sweeteners represented by sodium cyclamate, natural sweeteners usually have high sweetness, low-calorie content, good solubility, high stability, and rarely toxic side effects. Historically, researchers mainly focus on the function of natural sweeteners as substitutes for sugars in the food industry. This paper reviews the bioactivities of several typical natural sweeteners, including anti-cancer, anti-inflammatory, antioxidant, anti-bacterial, and anti-hyperglycemic activities. In addition, we have summarized the extraction, physicochemical properties, and application of natural sweeteners. The article aimed to comprehensively collate vital information about natural sweeteners and review the potentiality of tapping bioactive compounds from natural products. Hopefully, this review provides insights into the further development of natural sweeteners as therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Yanyu Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhiruo Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
2
|
Wang K, Jiang M, Chen Y, Huang Y, Cheng Z, Datsomor O, Jama SM, Zhu L, Li Y, Zhao G, Lin M. Changes in the rumen development, rumen fermentation, and rumen microbiota community in weaned calves during steviol glycosides treatment. Front Microbiol 2024; 15:1395665. [PMID: 38979539 PMCID: PMC11228177 DOI: 10.3389/fmicb.2024.1395665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/22/2024] [Indexed: 07/10/2024] Open
Abstract
Early weaning leads to weaning stress in calves, which hinders healthy growth and development. As an excellent sweetener applied in food, steviol glycosides (STE) has also been shown to exhibit positive biological activity in monogastric animals. Therefore, this study aimed to evaluate the impact of incorporating STE as a dietary supplement on rumen development, fermentation, and microbiota of rumen in weaned calves. This study selected 24 healthy Holstein bull calves and randomly allocated them into two groups (CON and STE). The results indicated that supplementation STE group improved rumen development in weaned calves, as demonstrated by a marked increase in the weight of the rumen, as well as the length and surface area of the rumen papilla. Compared with the CON group, the concentrations of total volatile fatty acids (TVFA), propionate, butyrate, and valerate were higher in the STE group. Moreover, STE treatment increased the relative abundance of Firmicutes and Actinobacteria at the phylum level. At the genus level, the STE group showed a significantly increased relative abundance of Succiniclasticum, Lachnospiraceae_NK3A20_group, and Olsenella, and a decreased relative abundance of Acinetobacter compared to the CON group. Pusillimonas, Lachnospiraceae_NK3A20_group, Olsenella, and Succiniclasticum were significantly enriched in rumen chyme after supplementation with STE, as demonstrated by LEfSe analysis. Overall, our findings revealed that rumen bacterial communities altered in response to the dietary supplementation with STE, and some bacterial taxa in these communities may have positive effects on rumen development during this period.
Collapse
Affiliation(s)
- Kexin Wang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Maocheng Jiang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yuhang Chen
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yuncheng Huang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhiqiang Cheng
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Osmond Datsomor
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shakib Mohamed Jama
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liping Zhu
- Zhucheng Haotian Pharm Co., Ltd., Zhucheng, China
| | - Yajing Li
- Zhucheng Haotian Pharm Co., Ltd., Zhucheng, China
| | - Guoqi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Miao Lin
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Efficient synthesis of rebaudioside D2 through UGT94D1-catalyzed regio-selective glycosylation. Carbohydr Res 2022; 522:108687. [DOI: 10.1016/j.carres.2022.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022]
|
4
|
Huang K, Huang J, Lin J, Li H, Xin J, Ma Z, Sang J, Hong Z, Zeng G, Hu X, Li O. Directional bioconversion and optimization of stevioside into rubusoside by Lelliottia sp. LST-1. J Appl Microbiol 2021; 132:1887-1899. [PMID: 34606155 DOI: 10.1111/jam.15316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022]
Abstract
AIMS The present study aimed to specifically transform stevioside (ST) into rubusoside (RS) through bioconversion with high efficiency, seeking to endow steviol glycosides (SGs) with subtle flavours for commercial acceptability. METHODS AND RESULTS An endophytic bacterium named Lelliottia LST-1 was screened and confirmed to specifically convert ST into RS, reaching a conversion rate of 75.4% after response surface optimization. Phylogenetic analysis combined with complete genome sequencing demonstrated that LST-1 was also presumed to be a new species. To further explore the principle and process of biological transformation, the potential beta-glucosidases GH3-1, GH3-2, GH3-3 and GH3-4 were expressed, purified and reacted with SGs. High-performance liquid chromatography revealed that all enzymes hydrolysed ST and generated RS, but substrate specificity analysis indicated that GH3-2 had the highest substrate specificity towards STs and the highest enzyme activity. CONCLUSION The potential β-glucosidase GH3-2 in Lelliottia sp. LST-1 was found to specifically and efficiently convert ST to RS. SIGNIFICANCE AND IMPACT OF STUDY The efficient biotransformation of ST into RS will be beneficial to its large-scale production and extensive application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ke Huang
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jingyu Huang
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jing Lin
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongwei Li
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiaqi Xin
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ziyang Ma
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Junhao Sang
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhiyun Hong
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Guohong Zeng
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiufang Hu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ou Li
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
5
|
Highly Efficient Deacidification Process for Camelina sativa Crude Oil by Molecular Distillation. SUSTAINABILITY 2021. [DOI: 10.3390/su13052818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recovery and reuse of high-acidity vegetable oil waste (higher content of free fatty acids) is a major concern for reducing their effect on the environment. Moreover, the conventional deacidification processes are known to show drawbacks, such as oil losses or higher costs of wastewater treatment, for which it requires great attention, especially at the industrial scale. This work presents the design of a highly efficient and sustainable process for Camelina sativa oil deacidification by using an ecofriendly method, namely molecular distillation. Experimental studies were performed to identify operating conditions for removing of free fatty acids (FFA) by molecular distillation which involves the oil evaporation in high vacuum conditions. The experimental studies were supported by statistical analysis and technical-economic analysis. Response surface methodology (RSM) was employed to formulate and validate second-order models to predict deacidification efficiency, FFA concentration, and triacylglyceride (TAG) concentration in deodorized oil based on three parameters effects, validated by statistical p-value < 0.05. For a desirability function value of 0.9826, the optimal parameters of evaporator temperature at 173.5 °C, wiper speed at 350 rpm, and feed flowrate at 2 mL/min were selected. The results for process design at optimal conditions (using conventional and molecular distillation methods) showed an efficiency over 92%, a significant reduction in FFA (up to 1%), and an increase in TAG (up to 93%) in refined oil for both methods. From an economical point of view, the deacidification by molecular distillation of Camelina sativa oil is a sustainable process: no wastewater generation, no solvents and water consumption, and lower production costs, obtaining a valuable by-product (FFA).
Collapse
|
6
|
Milani G, Vian M, Cavalluzzi MM, Franchini C, Corbo F, Lentini G, Chemat F. Ultrasound and deep eutectic solvents: An efficient combination to tune the mechanism of steviol glycosides extraction. ULTRASONICS SONOCHEMISTRY 2020; 69:105255. [PMID: 32682311 DOI: 10.1016/j.ultsonch.2020.105255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Ultrasound-assisted extraction is widely recognized as an eco-friendly technique due to low solvent consumption and time extraction as well as enhanced extraction efficiency with respect to conventional methods. Nevertheless, it would be convenient to avoid the usually used organic solvents to reduce the environment pollution. In this regard, Deep Eutectic Solvents (DES) represent nowadays a green and sustainable alternative for the extraction of bioactive compounds from natural sources. In this study, an efficient extraction of stevioside and rebaudioside A from Stevia rebaudiana coupling ultrasound with DES was developed. A solvent screening was performed using the predictive approach COnductor-like Screening MOdel for Real Solvent (COSMO-RS). The effect of three independent variables, namely % of water, temperature, and sonication amplitude, were investigated by the response surface methodology (RSM). Comparing ultrasound-assisted extraction (UAE) with conventional extraction, it has been demonstrated that the amount of steviol glycosides through UAE is almost three times higher than that obtained by the conventional method. Possible physicochemical factors involved in the UAE mechanism were discussed.
Collapse
Affiliation(s)
- Gualtiero Milani
- Department of Pharmacy-Pharmaceutical Sciences, University Aldo Moro-Bari, Via Orabona, 4, 70126 Bari, Italy.
| | - Maryline Vian
- Avignon University, INRA, UMR408, GREEN Extraction Team, 84000 Avignon, France
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy-Pharmaceutical Sciences, University Aldo Moro-Bari, Via Orabona, 4, 70126 Bari, Italy
| | - Carlo Franchini
- Department of Pharmacy-Pharmaceutical Sciences, University Aldo Moro-Bari, Via Orabona, 4, 70126 Bari, Italy
| | - Filomena Corbo
- Department of Pharmacy-Pharmaceutical Sciences, University Aldo Moro-Bari, Via Orabona, 4, 70126 Bari, Italy
| | - Giovanni Lentini
- Department of Pharmacy-Pharmaceutical Sciences, University Aldo Moro-Bari, Via Orabona, 4, 70126 Bari, Italy
| | - Farid Chemat
- Avignon University, INRA, UMR408, GREEN Extraction Team, 84000 Avignon, France
| |
Collapse
|