1
|
Wu Z, Niu H, Wang J, Guo R, Yang Z, Liang G, Ma X. A slow-release reduction material of Escherichia sp. F1 coupled with micron iron powder achieves the remediation of trichloroethylene-contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122765. [PMID: 39362170 DOI: 10.1016/j.jenvman.2024.122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Trichloroethylene (TCE) is a prevalent organic pollutant found in soil. The oxide passivation layer on the surface of micron iron powder inhibits the release of its reducing components, leading to ineffective reduction and purification of TCE in soil. To enhance TCE degradation, a slow-release reduction material "Escherichia sp. F1-micron iron powder" was developed. A novel iron-reducing bacterium, Escherichia sp. F1, was isolated from soil contaminated with chlorinated hydrocarbons. This bacterium demonstrated a sustained iron reduction capability, achieving a reduction rate of 38.7% for Fe(Ⅲ) within 15 days. Genome sequencing revealed that strain F1 harbors 53 functional iron reduction genes and 2 dehalogenation genes. Single-factor experiments identified the optimal conditions for TCE degradation in soil using the coupling material: glucose concentration at 40 mmol/kg, soil water content at 50%, and bacterial inoculum at 1% (v:w). Under these optimal conditions, the coupled material achieved 86.86% degradation of TCE in soil within 28 days. Further analysis using X-ray photoelectron spectroscopy of micron iron powder, soil Fe(Ⅱ) concentration, and soil physicochemical properties demonstrated that the addition of strain F1 to the soil could disrupt the passivation layer of iron oxide on the surface of micron iron powder, promoting the exposure of its reactive sites and internal reducing active components. This resulted in an in situ self-actuated activation of passivated micron iron powder, leading to an improved removal rate and complete dechlorination of TCE in the soil. Soil microbial high-throughput sequencing revealed that the addition of strain F1 regulated the soil bacterial community, significantly enriching of Escherichia-Shigella species associated with iron-reducing functions. This enrichment facilitated the degradation of TCE in the soil through coupling materials. The functional material plays a crucial role in achieving green treatment and risk control of sites contaminated with chlorinated organic pollutants.
Collapse
Affiliation(s)
- Zhineng Wu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Hanyu Niu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiao Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Runnan Guo
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zixuan Yang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Gaolei Liang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
2
|
Wu N, Ge X, Yin X, Yang L, Chen L, Shao R, Xu W. A review on polysaccharide biosynthesis in Cordyceps militaris. Int J Biol Macromol 2024; 260:129336. [PMID: 38224811 DOI: 10.1016/j.ijbiomac.2024.129336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/17/2024]
Abstract
Cordyceps militaris (C. militaris) is an edible parasitic fungus with medicinal properties. Its bioactive polysaccharides are structurally diverse and exhibit various metabolic and biological activities, including antitumor, hypoglycemic, antioxidant, hypolipidemic, anti-inflammatory, immunostimulatory, and anti-atherosclerotic effects. These properties make C. militaris-derived polysaccharides a promising candidate for future development. Recent advancements in microbial fermentation technology have enabled successful laboratory cultivation and extraction of these polysaccharides. These polysaccharides are structurally diverse and exhibit various biological activities, such as immunostimulatory, antioxidant, antitumor, hypolipidemic, and anti-atherosclerotic effects. This review aims to summarize the structure and production mechanisms of polysaccharides from C. militaris, covering extraction methods, key genes and pathways involved in biosynthesis, and fermentation factors that influence yield and activity. Furthermore, the future potential and challenges of utilizing polysaccharides in the development of health foods and pharmaceuticals are addressed. This review serves as a valuable reference in the fields of food and medicine, and provides a theoretical foundation for the study of polysaccharides.
Collapse
Affiliation(s)
- Na Wu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xiaodong Ge
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xuemei Yin
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Lei Yang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Ligen Chen
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Rong Shao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Wei Xu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China.
| |
Collapse
|
3
|
Efficacy of Green Extracting Solvents on Antioxidant, Xanthine Oxidase, and Plant Inhibitory Potentials of Solid-Based Residues (SBRs) of Cordyceps militaris. STRESSES 2022. [DOI: 10.3390/stresses3010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-based residues (SBRs) of Cordyceps militaris are often considered as waste after the cultivation of the fruiting body. To demonstrate the value of this by-product, different ratios of two favorable green solvents (EtOH and water) were employed to optimize the yields of cordycepin (Cor) and adenosine (Ado) and investigate relevant activities of plant growth inhibition (allelopathy), antioxidants, and xanthine oxidase. The SBR extracts of 60% EtOH-40% water (W4) and 40% EtOH-60% water (W6) exhibited the highest antioxidant activity as well as yielded the optimum content of Cor and Ado. The W4 and Wt (hot water) exhibited maximum inhibitory effects on the growth of Raphanus sativus (radish), Lactuca sativa (lettuce) and two noxious weeds, Echinochloa crus-galli (barnyard grass) and Bidens pilosa (beggarticks). Furthermore, GC-MS scan analysis revealed the presence of 14 major compounds in the SBRs. W4 is the best solvent to optimize yields of Cor and Ado, as well as having the strongest levels of antioxidant activity, xanthine oxidase, and growth-inhibitory activity. This study reveals that SBRs are a potential source of medicinal and agricultural utilization.
Collapse
|
4
|
Kang JY, Lee B, Kim CH, Choi JH, Kim MS. Enhancing the prebiotic and antioxidant effects of exopolysaccharides derived from Cordyceps militaris by enzyme-digestion. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Miao M, Yu WQ, Li Y, Sun YL, Guo SD. Structural Elucidation and Activities of Cordyceps militaris-Derived Polysaccharides: A Review. Front Nutr 2022; 9:898674. [PMID: 35711557 PMCID: PMC9193282 DOI: 10.3389/fnut.2022.898674] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
Cordyceps militaris is a parasitic edible fungus and has been used as tonics for centuries. Polysaccharides are a major water-soluble component of C. militaris. Recently, C. militaris-derived polysaccharides have been given much attention due to their various actions including antioxidant, anti-inflammatory, anti-tumor, anti-hyperlipidemic, anti-diabetic, anti-atherosclerotic, and immunomodulatory effects. These bioactivities are determined by the various structural characteristics of polysaccharides including monosaccharide composition, molecular weight, and glycosidic linkage. The widespread use of advanced analytical analysis tools has greatly improved the elucidation of the structural characteristics of C. militaris-derived polysaccharides. However, the methods for polysaccharide structural characterization and the latest findings related to C. militaris-derived polysaccharides, especially the potential structure-activity relationship, have not been well-summarized in recent reviews of the literature. This review will discuss the methods used in the elucidation of the structure of polysaccharides and structural characteristics as well as the signaling pathways modulated by C. militaris-derived polysaccharides. This article provides information useful for the development of C. militaris-derived polysaccharides as well as for investigating other medicinal polysaccharides.
Collapse
|
6
|
|
7
|
Li Y, Miao M, Yin F, Shen N, Yu WQ, Guo S. The polysaccharide-peptide complex from mushroom Cordyceps militaris ameliorates atherosclerosis by modulating the lncRNA-miRNA-mRNA axis. Food Funct 2022; 13:3185-3197. [DOI: 10.1039/d1fo03285b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polysaccharides from mushroom Cordyceps militaris are found to have pleiotropic bioactivities, suggesting a potential role in prevention of atherosclerosis. However, the underlying mechanisms of action are not clear. In this...
Collapse
|
8
|
De Villa R, Roasa J, Mine Y, Tsao R. Impact of solid-state fermentation on factors and mechanisms influencing the bioactive compounds of grains and processing by-products. Crit Rev Food Sci Nutr 2021:1-26. [PMID: 34955050 DOI: 10.1080/10408398.2021.2018989] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cereal and legume grains and their processing by-products are rich sources of bioactives such as phenolics with considerable health potential, but these bioactives suffer from low bioaccessibility and bioavailability, resulting in limited use. Several studies have demonstrated that solid-state fermentation (SSF) with food-grade microorganisms is effective in releasing bound phenolic compounds in cereal and legume products. In this review, we discuss the effect of SSF on cereal and legume grains and their by-products by examining the role of specific microorganisms, their hydrolytic enzymes, fermentability of agri-food substrates, and the potential health benefits of SSF-enhanced bioactive compounds. SSF with fungi (Aspergillus spp. and Rhizopus spp.), bacteria (Bacillus subtilis and lactic acid bacteria (LAB) spp.) and yeast (Saccharomyces cerevisiae) significantly increased the bioactive phenolics and antioxidant capacities in cereal and legume grains and by-products, mainly through carbohydrate-cleaving enzymes. Increased bioactive phenolic and peptide contents of SSF-bioprocessed cereal and legume grains have been implicated for improved antioxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic, and angiotensin-converting-enzyme (ACE) inhibitory effects in fermented agri-food products, but these remain as preliminary results. Future research should focus on the microbial mechanisms, suitability of substrates, and the physiological health benefits of SSF-treated grains and by-products.
Collapse
Affiliation(s)
- Ray De Villa
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Joy Roasa
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Rong Tsao
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
9
|
Increased Extracellular Saponin Production after the Addition of Rutin in Truffle Liquid Fermentation and Its Antioxidant Activities. FERMENTATION 2021. [DOI: 10.3390/fermentation7030103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Saponins possess a variety of pharmacological effects and exhibit great potential in the food industry as bioactive substances. In this study, extracellular saponin production via the liquid fermentation of Tuber melanosporum occurred with the addition of rutin. For this purpose, medium composition and culture conditions were optimized using single-factor experiments and an orthogonal experiment design. The optimal medium consisted of glucose (43.5 g/L), peptone (6 g/L), KH2PO4 (1.15 g/L), NaCl (0.2 g/L), vitamin B2 (0.082 g/L), vitamin B6 (0.1 g/L), vitamin C (0.02 g/L), and rutin (4.8 g/L). The culture conditions were as follows: 12.5% (v/v) inoculation, medium volume of 50 mL/250 mL flask, culture temperature of 24 °C, shaker speed of 190 rpm, initial pH of 5.7, and culture time of 96 h. Finally, a maximal extracellular saponin content of 0.413 g/L was obtained, which was 134.7% higher than that in the base medium. Rutin proved to be an excellent promoter, because the saponin production was increased by 50.2% compared to that in the optimized medium without rutin. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity, hydroxyl radical scavenging activity, and ferric reducing antioxidant power of truffle saponins reached 94.13%, 79.26%, and 42.22 mM, respectively. This study provides a useful strategy for fungal bioactive saponin production by liquid fermentation with the addition of flavonoid compounds.
Collapse
|
10
|
Sun Q, Zhang Z, Xu L, Shi W, Liu X, Wang F. Increasing Production of Truffle Polysaccharides in the Solid-state Fermentation of Tuber melanosporum by Diosgenin Based on Orthogonal Matrix and Nonlinear Regression Analysis. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Quanshan Sun
- School of Food Science and Biological Engineering, Jiangsu University
| | - Zhicai Zhang
- Institute of Agro-production Processing Engineering, Jiangsu University
- Zhenjiang Yemaikang Food Bio-Technology Co., Ltd
| | - Ling Xu
- School of Food Science and Biological Engineering, Jiangsu University
| | - Wenjing Shi
- School of Food Science and Biological Engineering, Jiangsu University
| | - Xiaocui Liu
- School of Food Science and Biological Engineering, Jiangsu University
| | - Feng Wang
- School of Food Science and Biological Engineering, Jiangsu University
| |
Collapse
|