1
|
Caro-Hernández O, Aguilar-Palazuelos E, Gutiérrez-Dorado R, Caro-Corrales J, Jacobo-Valenzuela N, Carrazco-Escalante M, Iribe-Salazar R, Vázquez-López Y, Pacheco-Plata F, Camacho-Hernández IL. Analysis of physicochemical variables and bioactive compounds in baked sweet potato snacks. J Food Sci 2024; 89:8569-8580. [PMID: 39592242 DOI: 10.1111/1750-3841.17509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024]
Abstract
Sweet potatoes have been the focus of study due to their nutritional content, as they are considered a food that can help reduce malnutrition owing to their energy contribution. In addition, they serve as a source of other compounds with biological activity that can offer health benefits. The objective of this research was to evaluate the effect of baking temperature on the physicochemical properties and bioactive compounds of sweet potato snacks and to analyze the kinetics for these variables during the process as a function of temperature and time. Fracturability (F), water activity (aw), color variables (L*, a*, and b*), total color difference (ΔE), ascorbic acid (AA), phenolic compounds (PC), and total carotenoids (TC) of raw and baked sweet potatoes at 100, 120, and 140°C were measured. The kinetics of moisture content ratio (X/X0), fracturability (F), water activity (aw), and total color difference (ΔE) were set up. Physicochemical analysis showed that higher baking temperatures led to softer texture with reduced water activity and significant color changes. Bioactive compounds: AA, PC, and TC exhibited a reduction with temperature. Despite these temperature-induced reductions, significant retention of AA and partial retention of PC and TC for these nutrient and antioxidants were achieved. Kinetic analysis emphasized the dynamic nature of physicochemical transformations during baking, providing valuable insights for both the food industry and consumer acceptance. PRACTICAL APPLICATION: Comprehending the kinetics of quality variables allows to understand the changes occurring in the food during the baking process. This knowledge enables the development of more efficient and controlled baking processes for producing healthier sweet potato snacks with characteristics that harmonize with consumers' preferences.
Collapse
Affiliation(s)
- Olivia Caro-Hernández
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Ernesto Aguilar-Palazuelos
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Roberto Gutiérrez-Dorado
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - José Caro-Corrales
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Noelia Jacobo-Valenzuela
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Marco Carrazco-Escalante
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Rosalina Iribe-Salazar
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Yessica Vázquez-López
- Posgrado en Ciencias Agropecuarias, Facultad de Medicina, Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Felícitas Pacheco-Plata
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Irma Leticia Camacho-Hernández
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| |
Collapse
|
2
|
Khajeh N, Mohammadi Nafchi A, Nouri L. Antioxidant and antimicrobial activities of tarragon and Zataria multiflora Boiss essential oils and their applications as active agents to improve the shelf life of freshly cut potato strips. Food Sci Nutr 2024; 12:3282-3294. [PMID: 38726437 PMCID: PMC11077239 DOI: 10.1002/fsn3.3995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 05/12/2024] Open
Abstract
This study investigated the possibility of using active coatings based on Zedo gum containing essential oils of Zataria multiflora Boiss (ZE) and tarragon (TE) to increase the shelf life and maintain the quality of freshly cut potato strips. The chemical compositions of ZE and TE were initially identified, and their antioxidant and antimicrobial activities were investigated. ZE consisted mainly of carvacrol (26.26%), p-cymene (21.50%), thymol (18.05%), and linalool (11.31%), and those of TE comprised p-allylanisole (81.92%), β-Ocimene E (8.06%), and β-Ocimene Z (5.35%). Afterwards, a Zedo gum active coating (1% v/w) containing 1% (v/v) essential oil was prepared, and the produced coating solutions were used to soak the potato strips for 5 min. The coated potatoes were kept fresh in a refrigerator for 9 days, and their quality characteristics were examined every 3 days. The results show that the weight loss, browning index, total microbial count, and mold and yeast counts in the strips increased during 9 days of cold storage, and hardness decreased (p < .05). However, the coatings of strips, especially those containing essential oils, reduced the intensity of changes in moisture, color, and hardness, increased microbial stability, and maintained the sensory acceptance of strips compared with the uncoated sample (control). Finally, this study demonstrated that the quality and shelf life of fresh potato strips can be improved by using active coatings based on Zedo gum containing ZE and TE (especially ZE).
Collapse
Affiliation(s)
- Niyoosha Khajeh
- Food Science and Technology Department, Damghan BranchIslamic Azad UniversityDamghanIran
| | - Abdorreza Mohammadi Nafchi
- Food Science and Technology Department, Damghan BranchIslamic Azad UniversityDamghanIran
- Food Technology Division, School of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
| | - Leila Nouri
- Food Science and Technology Department, Damghan BranchIslamic Azad UniversityDamghanIran
| |
Collapse
|
3
|
Pang L, Jiang Y, Chen L, Shao C, Li L, Wang X, Li X, Pan Y. Combination of Sodium Nitroprusside and Controlled Atmosphere Maintains Postharvest Quality of Chestnuts through Enhancement of Antioxidant Capacity. Foods 2024; 13:706. [PMID: 38472819 DOI: 10.3390/foods13050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The purpose of this study was to clarify the effect of CA (controlled atmosphere, 2-3% O2 + 3% CO2) and NO (nitric oxide, generated by 0.4 nM sodium nitroprusside), alone or combined (CA + NO), on the physio-chemical properties, enzyme activities and antioxidant capacities of chestnuts during storage at 0 °C for 180 d. Compared with control (CT), CA and CA+NO both improved the storage quality of the samples, but only CA resulted in more ethanol production. Moreover, these improvements were further enhanced and ethanol synthesis was inhibited by the addition of NO. A spectrometer was used to assess the production of phenolic content (TPC) and activities of phenylalanine ammonia-lyase (PAL), superoxide dismutas (SOD), peroxidase (POD), catalase (CAT) and polyphenol oxidase (PPO) as influenced by CA or CA+NO treatments. Higher TPC, PAL, SOD, POD, CAT, and lower PPO were observed in CA alone, and more so in the combination with NO group. The increased antioxidant production and enhanced antioxidant activities contributed to scavenging reactive oxygen species (ROS) and reducing malondialdehyde (MDA). This study unveiled the correlations and differences between the effects of CA and CA+NO on storage quality, providing valuable insights into postharvest preservation and suggesting that the combination (CA+NO) was more beneficial for quality maintenance in chestnuts.
Collapse
Affiliation(s)
- Linging Pang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Tianjin Gasin-DH Preservation Technologies Co., Ltd., Tianjin 300300, China
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lan Chen
- Shanxi Fruit Industry Cold Chain New Material Co., Ltd., Tongchuan 727100, China
| | - Chongxiao Shao
- Tianjin Gasin-DH Preservation Technologies Co., Ltd., Tianjin 300300, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanfang Pan
- Tianjin Gasin-DH Preservation Technologies Co., Ltd., Tianjin 300300, China
- Institute of Food Science and Technology, Chinese Academic of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Derossi A, Di Palma E, Moses JA, Santhoshkumar P, Caporizzi R, Severini C. Avenues for non-conventional robotics technology applications in the food industry. Food Res Int 2023; 173:113265. [PMID: 37803578 DOI: 10.1016/j.foodres.2023.113265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
Robots in manufacturing alleviate hazardous environmental conditions, reduce the physical/mental stress of the workers, maintain high precision for repetitive movements, reduce errors, speed up production, and minimize production costs. Although robots have pervaded many industrial sectors and domestic environments, the experiments in the food sectors are limited to pick-and-place operations and meat processing while we are assisting new attention in gastronomy. Given the great performances of the robots, there would be many other intriguing applications to explore which could usher the transition to precision food manufacturing. This review wants open thoughts and opinions on the use of robots in different food operations. First, we reviewed the recent advances in common applications - e.g. novel sensors, end-effectors, and robotic cutting. Then, we analyzed the use of robots in other operations such as cleaning, mixing/kneading, dough manipulation, precision dosing/cooking, and additive manufacturing. Finally, the most recent improvements of robotics in gastronomy with their use in restaurants/bars and domestic environments, are examined. The comprehensive analyses and the critical discussion highlighted the needs of further scientific understanding and exploitation activities aimed to fill the gap between the laboratory-scale results and the validation in the relevant environment.
Collapse
Affiliation(s)
- A Derossi
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Italy
| | - E Di Palma
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Italy
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, MoFPI, Govt. of India, Thanjavur, Tamil Nadu 613005, India
| | - P Santhoshkumar
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, MoFPI, Govt. of India, Thanjavur, Tamil Nadu 613005, India
| | - R Caporizzi
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Italy.
| | - C Severini
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Italy
| |
Collapse
|
5
|
Bas-Bellver C, Barrera C, Betoret N, Seguí L. Impact of Fermentation Pretreatment on Drying Behaviour and Antioxidant Attributes of Broccoli Waste Powdered Ingredients. Foods 2023; 12:3526. [PMID: 37835180 PMCID: PMC10572841 DOI: 10.3390/foods12193526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Valorisation of fruit and vegetable wastes by transforming residues and discards into functional powdered ingredients has gained interest in recent years. Moreover, fermentation has been recalled as an ancient technology available to increase the nutritional value of foods. In the present work, the impact of pretreatments (disruption and fermentation) on drying kinetics and functional properties of powdered broccoli stems was studied. Broccoli stems fermented with Lactiplantibacillus plantarum and non-fermented broccoli stems were freeze-dried and air-dried at different temperatures. Drying kinetics were obtained and fitted to several thin layer mathematical models. Powders were characterized in terms of physicochemical and antioxidant properties, as well as of probiotic potential. Fermentation promoted faster drying rates and increased phenols and flavonoids retention. Increasing drying temperature shortened the process and increased powders' antioxidant activity. Among the models applied, Page resulted in the best fit for all samples. Microbial survival was favoured by lower drying temperatures (air-drying at 50 °C and freeze-drying). Fermentation and drying conditions were proved to determine both drying behaviour and powders' properties.
Collapse
Affiliation(s)
| | - Cristina Barrera
- Institute of Food Engineering-FoodUPV, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain; (C.B.-B.); (N.B.); (L.S.)
| | | | | |
Collapse
|
6
|
Zu Z, Wang S, Zhao Y, Fan W, Li T. Integrated enzymes activity and transcriptome reveal the effect of exogenous melatonin on the strain degeneration of Cordyceps militaris. Front Microbiol 2023; 14:1112035. [PMID: 37089574 PMCID: PMC10117847 DOI: 10.3389/fmicb.2023.1112035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/15/2023] [Indexed: 04/09/2023] Open
Abstract
As a valuable medicinal and edible fungus, Cordyceps militaris has been industrialized with broad development prospects. It contains a lot of bioactive compounds that are beneficial to our health. However, during artificial cultivation, strain degeneration is a challenge that inhibits the industrialization utility of C. militaris. Exogenous melatonin (MT) can scavenge for reactive oxygen species (ROS) in fungus and can alleviate strain degeneration. To establish the significance and molecular mechanisms of MT on strain degeneration, we investigated the third-generation strain (W5-3) of C. militaris via morphological, biochemical, and transcriptomic approaches under MT treatment. Morphological analyses revealed that colony angulation of C. militaris was significantly weakened, and the aerial hypha was reduced by 60 μmol L-1 MT treatment. Biochemical analyses showed low levels of ROS and malondialdehyde (MDA), as well as increasing endogenous MT levels as exogenous MT increased. RNA-Seq revealed that compared with the control, several antioxidant enzyme-related genes were up-regulated under 60 μmol L-1 MT treatment. Among them, glutathione s-transferase genes were up-regulated by a factor of 11.04. In addition, genes that are potentially involved in cordycepin, adenosine and active compound biosynthesis for the growth and development of mycelium were up-regulated. Collectively, these findings provide the basis for further elucidation of the molecular mechanisms involved in C. militaris strain degeneration.
Collapse
Affiliation(s)
- Zhichao Zu
- Key Laboratory of Ministry of Education for Facility Horticulture, Shenyang, China
- Key Laboratory of Protected Horticulture, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
- Liaoning Key Laboratory of Functional Cordyceps militaris, Shenyang, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Siqi Wang
- Key Laboratory of Ministry of Education for Facility Horticulture, Shenyang, China
- Key Laboratory of Protected Horticulture, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
- Liaoning Key Laboratory of Functional Cordyceps militaris, Shenyang, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yingming Zhao
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Wenli Fan
- Key Laboratory of Ministry of Education for Facility Horticulture, Shenyang, China
- Key Laboratory of Protected Horticulture, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
- Liaoning Key Laboratory of Functional Cordyceps militaris, Shenyang, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Tianlai Li
- Key Laboratory of Ministry of Education for Facility Horticulture, Shenyang, China
- Key Laboratory of Protected Horticulture, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
- Liaoning Key Laboratory of Functional Cordyceps militaris, Shenyang, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
7
|
Bas-Bellver C, Barrera C, Betoret N, Seguí L. Impact of Disruption and Drying Conditions on Physicochemical, Functional and Antioxidant Properties of Powdered Ingredients Obtained from Brassica Vegetable By-Products. Foods 2022; 11:foods11223663. [PMID: 36429255 PMCID: PMC9689784 DOI: 10.3390/foods11223663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Reintroducing waste products into the food chain, thus contributing to circular economy, is a key goal towards sustainable food systems. Fruit and vegetable processing generates large amounts of residual organic matter, rich in bioactive compounds. In Brassicaceae, glucosinolates are present as secondary metabolites involved in the biotic stress response. They are hydrolysed by the enzyme myrosinase when plant tissue is damaged, releasing new products (isothiocyanates) of great interest to human health. In this work, the process for obtaining powdered products from broccoli and white cabbage by-products, to be used as food ingredients, was developed. Residues produced during primary processing of these vegetables were transformed into powders by a process consisting of disruption (chopping or grinding), drying (hot-air drying at 50, 60 or 70 °C, or freeze drying) and final milling. The impact of processing on powders' physicochemical and functional properties was assessed in terms of their physicochemical, technological and antioxidant properties. The matrix response to drying conditions (drying kinetics), as well as the isothiocyanate (sulforaphane) content of the powders obtained were also evaluated. The different combinations applied produced powdered products, the properties of which were determined by the techniques and conditions used. Freeze drying better preserved the characteristics of the raw materials; nevertheless, antioxidant characteristics were favoured by air drying at higher temperatures and by applying a lower intensity of disruption prior to drying. Sulforaphane was identified in all samples, although processing implied a reduction in this bioactive compound. The results of the present work suggest Brassica residues may be transformed into powdered ingredients that might be used to provide additional nutritional value while contributing to sustainable development.
Collapse
|
8
|
Xu W, Wang J, Deng Y, Li J, Yan T, Zhao S, Yang X, Xu E, Wang W, Liu D. Advanced cutting techniques for solid food: Mechanisms, applications, modeling approaches, and future perspectives. Compr Rev Food Sci Food Saf 2022; 21:1568-1597. [DOI: 10.1111/1541-4337.12896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Weidong Xu
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang R & D Center for Food Technology and Equipment Hangzhou Zhejiang 310058 China
| | - Jingyi Wang
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang R & D Center for Food Technology and Equipment Hangzhou Zhejiang 310058 China
| | - Yong Deng
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang R & D Center for Food Technology and Equipment Hangzhou Zhejiang 310058 China
| | - Jiaheng Li
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang R & D Center for Food Technology and Equipment Hangzhou Zhejiang 310058 China
| | - Tianyi Yan
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang R & D Center for Food Technology and Equipment Hangzhou Zhejiang 310058 China
| | - Shunan Zhao
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang R & D Center for Food Technology and Equipment Hangzhou Zhejiang 310058 China
| | - Xiaoling Yang
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang R & D Center for Food Technology and Equipment Hangzhou Zhejiang 310058 China
- School of Liquor and Food Engineering Guizhou University Guiyang China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang R & D Center for Food Technology and Equipment Hangzhou Zhejiang 310058 China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang R & D Center for Food Technology and Equipment Hangzhou Zhejiang 310058 China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang R & D Center for Food Technology and Equipment Hangzhou Zhejiang 310058 China
- Fuli Institute of Food Science Ningbo Research Institute Zhejiang University Hangzhou China
| |
Collapse
|
9
|
Gong W, Shi B, Zeng FK, Dong N, Lei Z, Liu J. Evaluation of cooking, nutritional, and quality characteristics of fresh-cut potato slice pretreated with acetic acid. J Food Sci 2021; 87:427-437. [PMID: 34953084 DOI: 10.1111/1750-3841.16000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/19/2021] [Accepted: 11/07/2021] [Indexed: 11/28/2022]
Abstract
Fresh-cut potato slices are very popular in the service of hot-pots. However, the gelatinized starch easily escaping from the potato cells during cooking causes the thickening of beef tallow or soup in the hot-pot. Thus, acetic acid is considered for solving the problem of potato slices. Besides, the nutritional and quality characteristics of potato slices are also evaluated in this study. Results show that 1.0%-1.5% (v/v) acetic acid treatment can decrease mass loss and starch digestion rate, and delay the degradation of ascorbic acid and deterioration of color and texture of potato slices. Such treatment also inhibits membrane oxidation and PPO activity, and increase the total phenolic accumulation of potato slice in 7-day storage. The cell wall integrity of the potato slice is strengthened by acetic acid treatment, providing a strategy for the improvement of the boiling resistance of potato slice, and endowing potato slice with the digesting resistance. PRACTICAL APPLICATION: Acid pretreatment would cause the intensification of potato cell wall, which finally decrease the in vitro digestibility through decrease of leakage of gelatinized starch from potato cell and the contact between gelatinized starch and digesting enzyme. This observation proved that the integrity of cell structure in vegetable is important for their processing quality improvement (especially for their hardness improvement after heating or fermentation).
Collapse
Affiliation(s)
- Weihua Gong
- National and Local United Engineering Laboratory of Integrative Utilization Technology of Eucommia Ulmoides, Jishou University, Jishou, P. R. China
| | - Bingyan Shi
- School of Liquor & Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Fan-Kui Zeng
- Research & Development Center for Eco-material and Eco-Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China
| | - Nan Dong
- Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang, P. R. China
| | - Zunguo Lei
- Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang, P. R. China
| | - Jia Liu
- School of Liquor & Food Engineering, Guizhou University, Guiyang, P. R. China.,Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang, P. R. China
| |
Collapse
|
10
|
Hu W, Guan Y, Ji Y, Yang X. Effect of cutting styles on quality, antioxidant activity, membrane lipid peroxidation, and browning in fresh-cut potatoes. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Pace B, Cefola M. Innovative Preservation Technology for the Fresh Fruit and Vegetables. Foods 2021; 10:foods10040719. [PMID: 33805357 PMCID: PMC8066757 DOI: 10.3390/foods10040719] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023] Open
Abstract
The preservation of the freshness of fruits and vegetables until their consumption is the aim of many research activities. Quality losses of fresh fruit and vegetables during cold chain are frequently attributable to an inappropriate use of postharvest technologies. Moreover, especially when fresh produce is transported to distant markets, it is necessary to adopt proper postharvest preservation technologies in order to preserve the initial quality and limit microbial decay. Nowadays, for each step of supply chain (packing house, cold storage rooms, precooling center, refrigerate transport and distribution), are available innovative preservation technologies that, alone or in combination, could improve the fresh products in order to maintain the principal quality and nutritional characteristics. The issue groups five original studies and two comprehensive reviews within the topic of preservation technologies related to innovative packaging and postharvest operation and treatments, highlighting their effect on quality keeping.
Collapse
|