1
|
Valencia M, Pérez-Beltrán M, López GD, Carazzone C, Galeano Garcia P. Molecular Networking from Volatilome of Theobroma grandiflorum (Copoazu) at Different Stages of Maturation Analyzed by HS-SPME-GC-MS. Molecules 2025; 30:1209. [PMID: 40141986 PMCID: PMC11944471 DOI: 10.3390/molecules30061209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 03/28/2025] Open
Abstract
Theobroma grandiflorum (copoazu) is a plant native to South America, widely cultivated in countries within the Amazon region. Its unique phytochemical composition imparts distinctive organoleptic properties, making it an exotic fruit. In this study, headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) was used to identify the volatile organic compounds (VOCs) produced by copoazu. The optimal conditions for sample pretreatment were first determined using a Design of Experiments (DoE) approach. Analysis of the volatile profiles enabled the identification of 96 copoazu VOCs across three ripening stages. Of these, 79 VOCs were classified into chemical compound families using spectral correlation analysis across various libraries and databases, as well as molecular network analysis. Additionally, a volatilomic analysis was conducted to examine the changes in VOCs throughout the ripening process. Molecular network analysis showed that the VOCs emitted by the fruit are linked to the interconversion of compounds, which can be observed through the study of the metabolic pathways. These findings provide a comprehensive analysis of the copoazu volatilome, providing valuable insights into the organoleptic characteristics of this Amazonian fruit. Esters and terpenes such as α-terpineol, trans-4-methoxythujane, linalool, 2-methylbutyl butanoate, 3-methylbut-2-enoic acid, 2-methylpentyl ester, and 2-methylpropyl hexanoate were identified as potential biomarkers associated with the copoazu ripening process.
Collapse
Affiliation(s)
- Mayrin Valencia
- Grupo de Investigación en Productos Naturales Amazónicos (GIPRONAZ), Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180001, Colombia;
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111711, Colombia; (M.P.-B.); (C.C.)
- Grupo de Investigación en Ciencias y Educación (ICE), Facultad de Ciencias y Humanidades, Universidad de América, Bogotá 111211, Colombia;
| | - Mónica Pérez-Beltrán
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111711, Colombia; (M.P.-B.); (C.C.)
| | - Gerson-Dirceu López
- Grupo de Investigación en Ciencias y Educación (ICE), Facultad de Ciencias y Humanidades, Universidad de América, Bogotá 111211, Colombia;
- Chemistry Department, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760042, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111711, Colombia; (M.P.-B.); (C.C.)
| | - Paula Galeano Garcia
- Grupo de Investigación en Productos Naturales Amazónicos (GIPRONAZ), Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180001, Colombia;
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111711, Colombia; (M.P.-B.); (C.C.)
| |
Collapse
|
2
|
Godse R, Bawane H, Rajkhowa R, Tripathi J, Kulkarni R. Comprehensive in situ and ex situ β-glucosidase-assisted assessment reveals Indian mangoes as reservoirs of glycosidic aroma precursors. Food Res Int 2023; 173:113355. [PMID: 37803658 DOI: 10.1016/j.foodres.2023.113355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
Mango, a valued commercial fruit in India is popular mostly because of its attractive flavour. Glycosidically bound volatiles (GBV), an underrepresented warehouse of aroma, remain completely unexplored in Indian mangoes. In this study, GBV were profiled in pulps and peels of 10 Indian mango cultivars, leading to detection of 66 GBV which were dominated by monoterpenoids and phenolics. Peels were quantitatively and qualitatively richer in GBV than pulps. Hierarchical clustering and principal component analysis indicated higher contribution of peel GBV to the distinctness of cultivars. Linalool, geraniol, and eugenol were the significant contributors based on the odour units. Direct β-glucosidase treatment to the juice resulted in the release of lesser number of volatiles than those released from the purified GBV extracts. Apart from providing a comprehensive catalogue of GBV in mangoes, our data suggests the need of critical assessment of the usefulness of β-glucosidases in aroma improvement of fruit juices.
Collapse
Affiliation(s)
- Ravish Godse
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 412115, India.
| | - Hemangi Bawane
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 412115, India.
| | - Riyakshi Rajkhowa
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 412115, India.
| | - Jyoti Tripathi
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| | - Ram Kulkarni
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 412115, India.
| |
Collapse
|
3
|
Maleš I, Dobrinčić A, Zorić Z, Vladimir-Knežević S, Elez Garofulić I, Repajić M, Skroza D, Jerković I, Dragović-Uzelac V. Phenolic, Headspace and Sensory Profile, and Antioxidant Capacity of Fruit Juice Enriched with Salvia officinalis L. and Thymus serpyllum L. Extract: A Potential for a Novel Herbal-Based Functional Beverages. Molecules 2023; 28:molecules28093656. [PMID: 37175066 PMCID: PMC10180401 DOI: 10.3390/molecules28093656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Since certain constituents are not naturally present in pure fruit juices, incorporating herbal extracts can provide specific sensory properties to the beverages and improve their biopotential. In our previous research, it was found that sage (Salvia officinalis L.), wild thyme (Thymus serpyllum L.), and combinations of their extracts had the highest total phenolic content and a unique composition of volatile compounds, which can contribute to the aromatic and antioxidant qualities of functional products. Therefore, this research aimed to investigate the potential of sage and wild thyme extracts, as well as their mixture (wild thyme:sage at 3:1, v/v), to enrich fruit juices (apple, pineapple, and orange). Obtained beverages were evaluated for sensory properties as well as phenolic and headspace composition (UPLC-MS/MS and HS-SPME/GC-MS analysis) and antioxidant capacity (ORAC assay). The incorporation of wild thyme extract in pineapple juice provided the most harmonious flavor and the highest content of volatile compounds (on PDMS/DVB fiber). The orange juice formulations were the most enriched with phenolic and volatile compounds (on DVB/CAR/PDMS fibers). The highest antioxidant capacity was observed in the formulation with orange juice and sage extract (22,925.39 ± 358.43 µM TE). This study demonstrated that enriching fruit juices with sage and wild thyme extracts could create functional beverages with improved sensory and health-promoting properties, providing valuable insights for the food and beverage industry to meet the growing demand of health-conscious consumers for natural and functional products.
Collapse
Affiliation(s)
- Ivanka Maleš
- Department of Pharmacy, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia
| | - Ana Dobrinčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Zoran Zorić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Sanda Vladimir-Knežević
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Marulićev trg 20, 10000 Zagreb, Croatia
| | - Ivona Elez Garofulić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Maja Repajić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Characteristic Aroma Compound in Cinnamon Bark Extract Using Soybean Oil and/or Water. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of soybean oil (20%, v/w) and extraction time (30, 60, or 90 min) on volatile compounds in cinnamon bark extract were investigated. The relative content and odor activity values (OAVs) of volatile compounds were measured by Gas Chromatography-Mass Spectrometer (GC-MS). The results showed that a total of 26 and 27 volatile compounds were detected in the water extract and the aqueous phase of the water/oil extraction, respectively. Hexanal, nonanal, cinnamaldehyde, D-limonene, 1-octen-3-ol, linalool, and anethole were the major aroma-active compounds, accounting for 85% of the total substance content. Cinnamaldehyde had the highest contribution rate to the aroma of the water extract (26%), whereas anethole has the highest contribution rate to the aroma of the oil/water extract (30%). Whether or not the extraction medium contained soybean oil, the relative content of aroma-active compounds in the aqueous phase decreased with increased extraction time, and the relative content of these compounds in the aqueous phase further decreased when soybean oil was present. This should be due to the high hydrophobicity of these compounds, which were prone to dissolving in the oil layer during the extraction process, resulting in a decrease in the relative content of aroma-active compounds in the aqueous phase.
Collapse
|