1
|
Calvo LG, Celeiro M, Lores M, Abril AG, de Miguel T. Assessing the effect of gastrointestinal conditions and solubility on the bioaccessibility of polyphenolic compounds from a white grape marc extract. Food Chem 2025; 480:143810. [PMID: 40112718 DOI: 10.1016/j.foodchem.2025.143810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/18/2024] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
This study investigates the bioaccessibility of phenolic compounds from a Vitis vinifera marc extract using an in vitro gastrointestinal model. Both undiluted and five-fold diluted extracts were digested to assess how solubility and gastrointestinal conditions impact polyphenol bioaccessibility. The extract was obtained using the environmentally friendly Medium Scale Ambient Temperature (MSAT) system. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that gastric digestion significantly increased polyphenolic content, particularly catechin, epicatechin, and procyanidins. Diluted extracts showed 30 % higher polyphenolic content and a 200 % increase in gallic acid compared to undigested samples. However, bioaccessibility decreased during intestinal digestion. Interaction tests with bile salts revealed 50 % polyphenol insolubility, suggesting that some compounds may remain in the residual fraction and serve as substrates for colonic microbiota fermentation. These findings emphasize the crucial role of gastrointestinal digestion in polyphenol bioaccessibility and highlight white grape marc extract as a potential source of bioactives for microbiota modulation and functional nutrition.
Collapse
Affiliation(s)
- Lorena G Calvo
- Department of Microbiology and Parasitology, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Maria Celeiro
- Laboratory of Research and Development of Analytical Solutions (LIDSA), Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Marta Lores
- Laboratory of Research and Development of Analytical Solutions (LIDSA), Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; i-Grape Laboratory, Via Isaac Pera 32, 15890, Santiago de Compostela, Spain
| | - Ana G Abril
- Department of Microbiology and Parasitology, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Trinidad de Miguel
- Department of Microbiology and Parasitology, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Chiarini E, Alessandria V, Buzzanca D, Giordano M, Seif Zadeh N, Mancuso F, Zeppa G. Valorization of Fruit By-Products Through Lactic Acid Fermentation for Innovative Beverage Formulation: Microbiological and Physiochemical Effects. Foods 2024; 13:3715. [PMID: 39682787 DOI: 10.3390/foods13233715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
The increase in food production is accompanied by an increase in waste, particularly agricultural by-products from cultivation and processing. These residues are referred to as agricultural by-products. To address this issue, biotechnological processes can be used to create new applications for these by-products. This study explored the use of LAB strains (Lactiplantibacillus plantarum, Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, and Limosilactobacillus fermentum) on by-products such as white grape pomace, cocoa bean shells, apple pomace, and defatted roasted hazelnut to develop yoghurt-style fruit beverages. Microbial load and pH changes were monitored during a 24 h fermentation and 14-day shelf life at 5 °C. Concentrations of sugars, organic acids, and volatile organic compounds were also analyzed using HPLC and GC-qMS. The results showed that optimizing the matrix led to significant bacterial growth, with viable microbes remaining under refrigeration. In particular, the strain of L. plantarum tested on the cocoa bean shell yielded the most promising results. After 24 h of fermentation, the strain reached a charge of 9.3 Log CFU/mL, acidifying the substrate to 3.9 and producing 19.00 g/100 g of lactic acid. Aromatic compounds were produced in all trials, without off-flavours, and characteristic fermented food flavours developed. Additionally, secondary metabolites produced by lactic acid bacteria may enhance the health benefits of these beverages.
Collapse
Affiliation(s)
- Elisabetta Chiarini
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy
| | - Valentina Alessandria
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy
| | - Davide Buzzanca
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy
| | - Manuela Giordano
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy
| | - Negin Seif Zadeh
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy
| | - Francesco Mancuso
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy
| | - Giuseppe Zeppa
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy
| |
Collapse
|
3
|
Braojos C, Rebollo-Hernanz M, Cañas S, Aguilera Y, Gil-Ramírez A, Benítez V, Martín-Cabrejas MA. Cocoa shell ingredients improve their lipid-lowering properties under simulated digestion: In vitro and HepG2 cells study. Food Res Int 2024; 196:115037. [PMID: 39614551 DOI: 10.1016/j.foodres.2024.115037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
Cocoa (Theobroma cacao) shell, the main by-product of cocoa industry, is associated with the regulation of several biomarkers of metabolic syndrome. However, there is little information about the digestion effect on the physiological properties of cocoa shell. The aim of this study was to assess the impact of a standardized in vitro digestion protocol on the hypolipidemic capacity of two cocoa shell ingredients, a flour (CSF) and an aqueous extract (CSE), through the evaluation of their in vitro hypolipidemic properties and lipid-lowering effects in HepG2 cells. CSF and CSE digested fractions increased their capacity to bind primary bile acids (16-88 %) and inhibit lipase activity (41-100 %), while their ability to bind secondary bile acids (33-42 %) was maintained. Likewise, the digested fractions of cocoa shell ingredients reduced the solubility of the cholesterol micelles (35-97 %) and inhibited the hydroxymethylglutaryl-Co-enzyme A reductase (HMGCR) activity (18-100 %). The hypolipidemic properties of non-digested fractions further enhanced the CSF potential to decrease lipid absorption. Cocoa shell ingredients demonstrated lipid-lowering properties after simulated digestion by effectively reducing the accumulation of intracellular lipids (78-122 %), triacylglycerides (60-90 %), and cholesterol (100 %) induced by palmitic acid in hepatic cells. These results were confirmed by their ability to stimulate lipolysis, reducing the increase in lipase activity (28-78 %) and increasing glycerol release (27-80 %) with respect to palmitic acid treated cells, and inhibiting HMGCR activity. Phenolic compounds and dietary fiber are significantly associated to the observed hypolipidemic effects of cocoa shell ingredients. These findings demonstrated the potential efficacy of CSF and CSE in reducing lipid absorption and reversing its hepatic accumulation. Hence, these cocoa shell ingredients might prevent diseases related to lipid accumulation by improving overall health status.
Collapse
Affiliation(s)
- Cheyenne Braojos
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
| | - Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
| | - Silvia Cañas
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
| | - Alicia Gil-Ramírez
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
| | - Vanesa Benítez
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
| | - Maria A Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
4
|
Tušek K, Benković M. Development of Novel Honey- and Oat-Based Cocoa Beverages-A Comprehensive Analysis of the Impact of Drying Temperature and Mixture Composition on Physical, Chemical and Sensory Properties. Molecules 2024; 29:4665. [PMID: 39407593 PMCID: PMC11477636 DOI: 10.3390/molecules29194665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
This research aimed to assess the influence of drying temperature (50, 60 and 70 °C), honey/oat flour ratio (60:40, 50:50 and 40:60) and cocoa contents (5, 6.25 and 7.5 g/100 g) on the physical (color, moisture content, bulk density, flowability (Hausner ratio, Carr index), dispersibility, solubility, and particle size), chemical (total dissolved solids, conductivity, pH, amount of sugar, color, total polyphenolic content, and antioxidant activity), and sensory properties (powder appearance, color, odor; and beverage appearance, color, odor, sweetness, bitterness, taste, texture) of a newly developed cocoa powder mixture in which honey was used as a sweetener and oat flour as a filler. Also, a further aim of this study was to optimize the composition of the mixture based on chemical, physical and sensory properties. Based on the optimization results, the highest total polyphenolic content and antioxidant activity were achieved at 70 °C with a honey/oat ratio of 50% and a cocoa content of 7.5 g. Drying temperature has a significant effect on powder odor and beverage odor, as well as on beverage bitterness, while the honey/oat flour ratio has a significant effect on color, with primarily values L* and a*. The cocoa contents mostly affect total polyphenolic content and antioxidant activity.
Collapse
Affiliation(s)
- Kristina Tušek
- Health Centre Krapina-Zagorje County, Mirka Crkvenca 1, 49000 Krapina, Croatia;
| | - Maja Benković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Llorens P, Chiacchio MF, Tagliamonte S, Juan-García A, Pallarés N, Moltó JC, Vitaglione P, Juan C. Potential bioaccessibility and bioavailability of polyphenols and functional properties of tiger nut beverage and its by-product during in vitro digestion. Food Funct 2024; 15:8143-8152. [PMID: 39011755 DOI: 10.1039/d4fo01537a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
"Horchata de chufa" is a beverage produced from tiger nut tubers, which yields a high amount of by-product. This study explored the functional properties of the Spanish tiger nut beverage (TNB) and its by-product (TNBP) together with the bioaccessibility and bioavailability of polyphenols in vitro. TNB and TNBP were characterized for polyphenols via LC/MS/MS and underwent in vitro digestion (INFOGEST). The total antioxidant capacity (TAC) of all bioaccessible fractions and digestion residues was assessed. Intestinal bioaccessible fractions were tested for the ability to inhibit the activity of digestive enzymes (α-amylase, α-glucosidase, and lipase) and the content of polyphenols, whose bioavailability was assessed in a Caco-2 cell model. Thirteen polyphenols were quantified and found to be more abundant in TNB (603 ± 1.4 μg g-1 DW) than in TNBP (187 ± 1.0 μg g-1 DW). Polyphenol bioaccessibility was higher for TNBP than that for TNB (57% vs. 27%), and despite a similar TAC of the intestinal bioaccessible fractions (10.2 ± 0.1 μmoL vs. 9.2 ± 0.03 μmoL eq. Trolox per g DW for TNB and TNBP, respectively), the different patterns of polyphenols released upon digestion suggested the higher ability of TNBP fraction to inhibit α-glucosidase and lipase. TNBP digestion residue showed higher TAC than TNB. Moreover, TNB polyphenols exhibited over 80% bioavailability, whereas TNBP polyphenols' bioavailability ranged from 62% to 84%. Overall, the findings demonstrated that TNBP maintains a high nutritional value, thus suggesting its possible reuse in innovative, healthy, and sustainable foods.
Collapse
Affiliation(s)
- Paula Llorens
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | | | - Silvia Tagliamonte
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - Noelia Pallarés
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - Juan Carlos Moltó
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| |
Collapse
|
6
|
Lucas-Gonzalez R, Sayas-Barberá E, Lorenzo JM, Pérez-Álvarez JÁ, Fernández-López J, Viuda-Martos M. Changes in bioactive compounds present in beef burgers formulated with walnut oil gelled emulsion as a fat substitute during in vitro gastrointestinal digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6473-6482. [PMID: 37219392 DOI: 10.1002/jsfa.12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/29/2023] [Accepted: 05/23/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND The partial or total substitution of animal fat by a gelled emulsion elaborated with cocoa bean shell and walnut oil in beef burgers was assessed in terms of the stability of the bioactive compounds (polyphenolic and methylxanthines compounds, and fatty acid profile), bioaccessibility, colon-available indices (CAIs), and lipid oxidation after in vitro gastrointestinal digestion (GID). RESULTS No free polyphenolic compounds were detected in the soluble fraction after the GID of reformulated beef burgers. Reductions were obtained in the bound fraction with respect to the undigested sample from 47.57 to 53.12% for protocatechuic acid, from 60.26 to 78.01% for catechin, and from 38.37 to 60.95% for epicatechin. The methylxanthine content decreased significantly after GID. The theobromine content fell by between 48.41 and 68.61% and the caffeine content was reduced by between 96.47 and 97.95%. The fatty acid profile of undigested samples was very similar to that of digested samples. In the control burger the predominant fatty acids were oleic acid (453.27 mg g-1 ) and palmitic acid (242.20 mg g-1 ), whereas in reformulated burgers a high content of linoleic acid (304.58 and 413.35 mg g-1 ) and α-linolenic acid (52.44 and 82.35 mg g-1 ) was found. As expected, both undigested and digested reformulated samples presented a higher degree of oxidation than the control sample. CONCLUSIONS The reformulated beef burgers with cocoa bean shells flour and walnut oil were a good source of bioactive compounds, which were stable after in vitro gastrointestinal digestion. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Raquel Lucas-Gonzalez
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Miguel Hernández University, Alicante, Spain
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - Estrella Sayas-Barberá
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Miguel Hernández University, Alicante, Spain
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Universidade de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Ourense, Spain
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Miguel Hernández University, Alicante, Spain
| | - Juana Fernández-López
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Miguel Hernández University, Alicante, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Miguel Hernández University, Alicante, Spain
| |
Collapse
|
7
|
Delgado-Ospina J, Esposito L, Molina-Hernandez JB, Pérez-Álvarez JÁ, Martuscelli M, Chaves-López C. Cocoa Shell Infusion: A Promising Application for Added-Value Beverages Based on Cocoa's Production Coproducts. Foods 2023; 12:2442. [PMID: 37444183 DOI: 10.3390/foods12132442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The cocoa shell (CS) is being incorporated into different food products due to its recognized content of bioactive compounds. In the case of cocoa shell infusions (CSI), the bioactive compounds that manage to be transferred to the infusion have yet to be clearly known, i.e., what is really available to the consumer. In this study, CS was obtained from toasted Colombian Criollo cocoa beans. Three particle sizes (A: >710 µm; B: >425 and <710 µm; C: <425 µm) were evaluated in the CSI, which was traditionally prepared by adding CS to hot water (1%). The decrease in particle size increased the antioxidant capacity (DPPH and ABTS) and the total phenolic compounds. A significant effect (p < 0.05) both of the particle size and of the temperature of tasting was found on some sensory attributes: greater bitterness, acidity, and astringency were due to the greater presence of epicatechin, melanoidins, and proanthocyanidins in the smaller particle sizes. The analysis of the volatile organic compounds showed that the CSI aroma was characterized by the presence of nonanal, 2-nonanone, tetramethylpyrazine, α-limonene, and linalool, which present few variations among the particle sizes. Moreover, analysis of biogenic amines, ochratoxin A, and microbial load showed that CSI is not a risk to public health. Reducing particle size becomes an important step to valorize the functional properties of CS and increase the quality of CSI.
Collapse
Affiliation(s)
- Johannes Delgado-Ospina
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 # 6-65, Cali 76001, Colombia
| | - Luigi Esposito
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Junior Bernardo Molina-Hernandez
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, CYTED-Healthy Meat. 119RT0568 "Productos Cárnicos más Saludables", 03312 Orihuela, Spain
| | - Maria Martuscelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Clemencia Chaves-López
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, CYTED-Healthy Meat. 119RT0568 "Productos Cárnicos más Saludables", 03312 Orihuela, Spain
| |
Collapse
|
8
|
Sánchez M, Laca A, Laca A, Díaz M. Cocoa Bean Shell: A By-Product with High Potential for Nutritional and Biotechnological Applications. Antioxidants (Basel) 2023; 12:antiox12051028. [PMID: 37237894 DOI: 10.3390/antiox12051028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cocoa bean shell (CBS) is one of the main solid wastes derived from the chocolate industry. This residual biomass could be an interesting source of nutrients and bioactive compounds due to its high content in dietary fibres, polyphenols and methylxanthines. Specifically, CBS can be employed as a raw material for the recovery of, for example, antioxidants, antivirals and/or antimicrobials. Additionally, it can be used as a substrate to obtain biofuels (bioethanol or biomethane), as an additive in food processing, as an adsorbent and, even, as a corrosion-inhibiting agent. Together with the research on obtaining and characterising different compounds of interest from CBS, some works have focused on the employment of novel sustainable extraction methods and others on the possible use of the whole CBS or some derived products. This review provides insight into the different alternatives of CBS valorisation, including the most recent innovations, trends and challenges for the biotechnological application of this interesting and underused by-product.
Collapse
Affiliation(s)
- Marta Sánchez
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain
| | - Amanda Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain
| | - Adriana Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
9
|
Effect of Tannins on Cholesterol Content and Its Oxidation in Egg Pasta as Related to Different Pasta Shapes. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
AbstractEgg pasta contains high amount of cholesterol, that upon oxidation, generates oxysterols (COPs), which play a key role in the onset of several human diseases. In this study, the effect of two tannins (esters of ellagic acid, A; esters of gallic acid, B) at three different concentrations (0.25%, 0.50%, 1.00%) was tested in egg pasta considering two different pasta shapes (squared, S; rectangular, F). When tannin B was added, the total phenolic content (TPC) in fresh pasta increased (p < 0.01) and after cooking its content was greater than those obtained with tannin A. The pasta shape affected the presence of cholesterol; its amount in uncooked F shape samples (27.67 ± 0.28 mg/g pasta) was higher than that found in S shape (21.18 ± 0.49 mg/g pasta). In addition, tannin B significantly (p < 0.01) increased the presence of cholesterol in the cooking water (up to 1.04 ± 0.05 μg/mL), in particular in S pasta shape. Tannin B was also greater than tannin A to reduce the content of COPs in fresh egg pasta, while the cooking process did not impact (p > 0.05) the oxidation of cholesterol. The results suggest that tannin B could be applied in the formulation of egg pasta as a strategy for reducing the content of cholesterol and its oxidation products.
Collapse
|
10
|
Fortes JP, Franco FW, Baranzelli J, Ugalde GA, Ballus CA, Rodrigues E, Mazutti MA, Somacal S, Sautter CK. Enhancement of the Functional Properties of Mead Aged with Oak ( Quercus) Chips at Different Toasting Levels. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010056. [PMID: 36615250 PMCID: PMC9822390 DOI: 10.3390/molecules28010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Consumers increasingly prefer and seek functional beverages, which, given their characteristics, provide important bioactive compounds that help prevent and treat chronic diseases. Mead is a traditional fermented alcoholic beverage made from honey solution. The aging process of mead with oak chips is innovative and bestows functional characteristics to this beverage. Thus, in this study, we sought to develop and characterize a novel functional beverage by combining the health benefits of honey with the traditional aging process of alcoholic beverages in wood. Phenolic compounds, flavonoids, and antioxidant capacity were analyzed in mead using oak chips at different toasting levels and aged for 360 days. LC-ESI-QTOF-MS/MS was used to analyze the chemical profile of different meads. Over time, the aging process with oak chips showed a higher total phenolic and flavonoid content and antioxidant capacity. Eighteen compounds belonging to the classes of organic acids, phenolic acids, flavonoids, and tannins were identified in meads after 360 days. Our findings revealed that the addition of oak chips during aging contributed to p-coumaric, ellagic, abscisic, and chlorogenic acids, and naringenin, vanillin, and tiliroside significantly impacted the functional quality of mead.
Collapse
Affiliation(s)
- Juciane Prois Fortes
- Graduate Program on Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
- Integrated Centre for Laboratory Analysis Development (NIDAL), Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Fernanda Wouters Franco
- Graduate Program on Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
- Integrated Centre for Laboratory Analysis Development (NIDAL), Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Julia Baranzelli
- Graduate Program on Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
- Integrated Centre for Laboratory Analysis Development (NIDAL), Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Gustavo Andrade Ugalde
- Graduate Program on Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Cristiano Augusto Ballus
- Graduate Program on Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Eliseu Rodrigues
- Department of Food Science, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Márcio Antônio Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Sabrina Somacal
- Graduate Program on Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
- Integrated Centre for Laboratory Analysis Development (NIDAL), Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
- Correspondence:
| | - Claudia Kaehler Sautter
- Graduate Program on Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
- Integrated Centre for Laboratory Analysis Development (NIDAL), Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
11
|
Theobroma cacao and Theobroma grandiflorum: Botany, Composition and Pharmacological Activities of Pods and Seeds. Foods 2022; 11:foods11243966. [PMID: 36553708 PMCID: PMC9778104 DOI: 10.3390/foods11243966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Cocoa and cupuassu are evergreen Amazonian trees belonging to the genus Theobroma, with morphologically distinct fruits, including pods and beans. These beans are generally used for agri-food and cosmetics and have high fat and carbohydrates contents. The beans also contain interesting bioactive compounds, among which are polyphenols and methylxanthines thought to be responsible for various health benefits such as protective abilities against cardiovascular and neurodegenerative disorders and other metabolic disorders such as obesity and diabetes. Although these pods represent 50-80% of the whole fruit and provide a rich source of proteins, they are regularly eliminated during the cocoa and cupuassu transformation process. The purpose of this work is to provide an overview of recent research on cocoa and cupuassu pods and beans, with emphasis on their chemical composition, bioavailability, and pharmacological properties. According to the literature, pods and beans from cocoa and cupuassu are promising ecological and healthy resources.
Collapse
|
12
|
Fan S, Li J, Zhang X, Xu D, Liu X, Dias AC, Zhang X, Chen C. A study on the identification, quantification, and biological activity of compounds from Cornus officinalis before and after in vitro gastrointestinal digestion and simulated colonic fermentation. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
13
|
Interaction between Chocolate Polyphenols and Encapsulated Probiotics during In Vitro Digestion and Colonic Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study evaluated the interaction between probiotics and polyphenols in chocolates (45% and 70% cocoa) fortified with encapsulated probiotics. Cocoa powder was used as the main encapsulation component in a Na-alginate plus fructooligosaccharides formulation. Probiotic-chocolates (PCh) were produced by adding 1% encapsulated probiotics to the final mixture. The chocolate samples were subjected to in vitro gastrointestinal digestion and colonic fermentation. The data revealed that the most bioaccessible polyphenols in both formulations of PCh containing 45% and 70% cocoa were released in the gastric digested supernatant. The bioaccessible polyphenols from PCh with 70% cocoa reached 83.22–92.33% and 8.08–15.14% during gastrointestinal digestion and colonic fermentation, respectively. Furthermore, the polyphenols with higher bioaccessibility during colonic fermentation of both PChs developed with the CA1 formulation (cocoa powder 10%, Na-alginate 1% and fructooligosaccharides 2%) were detected in the presence of Streptococcus thermophilus and Lactobacillus sanfranciscensis. The results showed that PCh with specific probiotics favored the bioconversion of a specific polyphenol. For example, chocolate fortified with Lacticaseibacillus casei released larger quantities of epicatechin and procyanidin B1, while Lactiplantibacillus plantarum released more catechin and procyanidin B1 for Lacticaseibacillus rhamnosus LGG. Overall, the study findings concluded that chocolate polyphenols could be utilized by probiotics for their metabolism and modulating the gut, which improved the chocolates’ functionality.
Collapse
|
14
|
Belwal T, Cravotto C, Ramola S, Thakur M, Chemat F, Cravotto G. Bioactive Compounds from Cocoa Husk: Extraction, Analysis and Applications in Food Production Chain. Foods 2022; 11:foods11060798. [PMID: 35327221 PMCID: PMC8947495 DOI: 10.3390/foods11060798] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 01/18/2023] Open
Abstract
Cocoa husk is considered a waste product after cocoa processing and creates environmental issues. These waste products are rich in polyphenols, methylxanthine, dietary fibers, and phytosterols, which can be extracted and utilized in various food and health products. Cocoa beans represent only 32–34% of fruit weight. Various extraction methods were implemented for the preparation of extracts and/or the recovery of bioactive compounds. Besides conventional extraction methods, various studies have been conducted using advanced extraction methods, including microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE), subcritical water extraction (SWE), supercritical fluid extraction (SFE), and pressurized liquid extraction (PLE). To include cocoa husk waste products or extracts in different food products, various functional foods such as bakery products, jam, chocolate, beverage, and sausage were prepared. This review mainly focused on the composition and functional characteristics of cocoa husk waste products and their utilization in different food products. Moreover, recommendations were made for the complete utilization of these waste products and their involvement in the circular economy.
Collapse
Affiliation(s)
- Tarun Belwal
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
| | - Christian Cravotto
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France; (C.C.); (F.C.)
| | - Sudipta Ramola
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida 201303, India;
| | - Farid Chemat
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France; (C.C.); (F.C.)
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
- Correspondence: ; Tel.: +39-011-670-7183; Fax: +39-011-670-7162
| |
Collapse
|
15
|
Coffee Silverskin as a Functional Ingredient in Vegan Biscuits: Physicochemical and Sensory Properties and In Vitro Bioaccessibility of Bioactive Compounds. Foods 2022; 11:foods11050717. [PMID: 35267349 PMCID: PMC8909313 DOI: 10.3390/foods11050717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
Coffee silverskin (CS), a by-product obtained by the coffee industry after the roasting process, is scientifically known to be a source of fiber and polyphenols, which could contribute to human health. In this work, the production of CS-enriched biscuits is proposed, where the CS from Arabica and Robusta type and a decaffeinated blend of the two were used at three different levels as a replacement for wheat flour. The biscuits were analyzed for their physicochemical properties, consumer acceptability, and the bioaccessibility of polyphenols after in vitro digestion was estimated in order to identify the formulation most appreciated by consumers and most promising in terms of nutritional and biofunctional potential. From the results, CS-based biscuits represent an interesting possibility to create a more sustainable coffee chain, thanks to the valorization of the silverskin, especially if a decaffeinated CS is considered. In fact, a 4% replacement of the wheat flour with decaffeinated CS is able to give a final product with a high content of accessible polyphenols and a biscuit appreciated by the consumer.
Collapse
|
16
|
Patil S, M V, Murthy PS. Phytochemical profile and antioxidant potential of coffee leaves influenced by green extraction techniques and in vitro bio-accessibility of its functional compounds. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01345-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Hossain MN, Senaka Ranadheera C, Fang Z, Masum A, Ajlouni S. Viability of Lactobacillus delbrueckii in chocolates during storage and in-vitro bioaccessibility of polyphenols and SCFAs. Curr Res Food Sci 2022; 5:1266-1275. [PMID: 36061408 PMCID: PMC9428806 DOI: 10.1016/j.crfs.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
This study evaluated the viability of encapsulated Lactobacillus delbrueckii subsp. bulgaricus in chocolate during storage and in-vitro gastrointestinal transit. Flavonoid contents and short chain fatty acids (SCFAs) production during gastrointestinal transit were also assessed. Encapsulated L. delbrueckii subsp. bulgaricus survived well in chocolates >7 logs both after 120 days of storage at 4 °C and 25 °C, and during in-vitro gastrointestinal transit. The release of SCFAs through in-vitro gastrointestinal digestion and colonic fermentation revealed that probiotic-chocolates could be an excellent source of nutrients for the gut microbiota. Encapsulated probiotic in chocolates with 70% cocoa produced significantly (P < 0.05) more acetic, propionic, isobutyric, butyric and isovaleric acids than that with 45% cocoa. The bioconversion results of a specific polyphenol by L. delbrueckii subsp. bulgaricus exhibited that chocolate polyphenols could be utilized by probiotics for their metabolism. These findings confirmed that chocolate could be successfully fortified with L. delbrueckii subsp. bulgaricus encapsulation to improve health promoting properties of chocolates. Chocolates enhance the biosynthesis of SCFAs and Vit B12 in colonic fermentation. Chocolates served as a prebiotic source for gut microbiota proliferation. Chocolate with probiotics would favor the bioconversion of a specific polyphenols. Chocolates nutritional value can be enhanced via fortification with probiotics.
Collapse
|
18
|
Abstract
Worldwide, the wastes derived from food production are generated in elevated volumes annually. In particular, the cocoa industrial wastes represent a source of usable biomass for the elaboration of new products such as food, livestock feed, cosmetics, and chemical products, and they can even be used for the generation of biofuels. The cocoa industrial wastes include cocoa pod husk, mucilage, and bean shells, which contain compounds of interest for different industries. However, the lignocellulose content of these by-products requires a pretreatment to fully utilize them; thus, different biofuels can be produced, depending on the conversion technology used to obtain the highest biomass yield. Recent studies reported the use of cocoa industrial wastes for the production of solid, liquid, and gaseous biofuels; nevertheless, the most common use reported is as a direct combustion source, which is used to supply the same production plants. Therefore, the objective of this work is to carry out a review on the uses of the by-products generated from cocoa for the generation of biofuels, as well as the technological concept applied for the transformation. In addition, the future trends indicate the relevance of using catalysts in production to increase reactions in the conversion of compounds, including the use of statistical models to optimize the processing variables.
Collapse
|
19
|
Chemometric Classification of Cocoa Bean Shells Based on Their Polyphenolic Profile Determined by RP-HPLC-PDA Analysis and Spectrophotometric Assays. Antioxidants (Basel) 2021; 10:antiox10101533. [PMID: 34679667 PMCID: PMC8532815 DOI: 10.3390/antiox10101533] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/05/2022] Open
Abstract
The cocoa bean shell (CBS), a byproduct from the cocoa industry, was recently proposed as a functional and low-cost ingredient, mainly because of its content in polyphenols. However, vegetal food products could significantly differ in their chemical composition depending on different factors such as their geographical provenience. This work is aimed to determine the polyphenolic and methylxanthine profile of different CBS samples and utilize it for achieving their differentiation according to their geographical origin and variety. RP-HPLC-PDA was used to determine the CBS polyphenolic profile. Spectrophotometric assays were used to obtain the total phenolic, flavonoid, and tannin contents, as well as to evaluate their radical scavenging activity. The results obtained from both methods were then compared and used for the CBS differentiation according to their origin and varieties through chemometric analysis. RP-HPLC-PDA allowed to determine 25 polyphenolic compounds, as well as the methylxanthines theobromine and caffeine. Polyphenolic profile results highlighted significant differences among the analyzed samples, allowing for their differentiation based on their geographical provenience. Similar results were achieved with the results of the spectrophotometric assays, considered as screening methods. Differentiation based on CBS variety was instead obtained based on the HPLC-determined methylxanthine profile.
Collapse
|
20
|
Barbosa-Pereira L, Belviso S, Ferrocino I, Rojo-Poveda O, Zeppa G. Characterization and Classification of Cocoa Bean Shells from Different Regions of Venezuela Using HPLC-PDA-MS/MS and Spectrophotometric Techniques Coupled to Chemometric Analysis. Foods 2021; 10:1791. [PMID: 34441568 PMCID: PMC8393802 DOI: 10.3390/foods10081791] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 01/30/2023] Open
Abstract
The cocoa bean shell (CBS) is one of the main cocoa byproducts with a prospective to be used as a functional food ingredient due to its nutritional and sensory properties. This study aims to define the chemical fingerprint of CBSs obtained from cocoa beans of diverse cultivars and collected in different geographical areas of Venezuela assessed using high-performance liquid chromatography coupled to photodiodes array and mass spectrometry (HPLC-PDA-MS/MS) and spectrophotometric assays combined with multivariate analysis for classification purposes. The study provides a comprehensive fingerprint and quantitative data for 39 compounds, including methylxanthines and several polyphenols, such as flavan-3-ols, procyanidins, and N-phenylpropenoyl amino acids. Several key cocoa markers, such as theobromine, epicatechin, quercetin-3-O-glucoside, procyanidin_A pentoside_3, and N-coumaroyl-l-aspartate_2, were found suitable for the classification of CBS according to their cultivar and origin. Despite the screening methods required a previous purification of the sample, both methodologies appear to be suitable for the classification of CBS with a high correlation between datasets. Finally, preliminary findings on the identification of potential contributors for the radical scavenging activity of CBS were also accomplished to support the valorization of this byproduct as a bioactive ingredient in the production of functional foods.
Collapse
Affiliation(s)
- Letricia Barbosa-Pereira
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (S.B.); (I.F.); (O.R.-P.); (G.Z.)
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Simona Belviso
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (S.B.); (I.F.); (O.R.-P.); (G.Z.)
| | - Ilario Ferrocino
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (S.B.); (I.F.); (O.R.-P.); (G.Z.)
| | - Olga Rojo-Poveda
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (S.B.); (I.F.); (O.R.-P.); (G.Z.)
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Giuseppe Zeppa
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (S.B.); (I.F.); (O.R.-P.); (G.Z.)
| |
Collapse
|
21
|
Rojo-Poveda O, Ribeiro SO, Anton-Sales C, Keymeulen F, Barbosa-Pereira L, Delporte C, Zeppa G, Stévigny C. Evaluation of Cocoa Bean Shell Antimicrobial Activity: A Tentative Assay Using a Metabolomic Approach for Active Compound Identification. PLANTA MEDICA 2021; 87:841-849. [PMID: 34020491 DOI: 10.1055/a-1499-7829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cocoa bean shell is one of the main by-products of chocolate manufacturing and possesses several compounds with biofunctionalities. It can function as an antibacterial agent, and its action is mostly reported against Streptococcus mutans. However, only a few studies have investigated the cocoa bean shell compounds responsible for this activity. This study aimed to evaluate several extracts of cocoa bean shells from different geographical origins and cocoa varieties and estimate their antimicrobial properties against different fungal and bacterial strains by determining their minimal inhibitory concentration. The results demonstrated antimicrobial activity of cocoa bean shell against one of the tested strains, S. mutans. Cocoa bean shell extracts were further analysed via LC-HRMS for untargeted metabolomic analysis. LC-HRMS data were analysed (preprocessing and statistical analyses) using the Workflow4Metabolomics platform. The latter enabled us to identify possible compounds responsible for the detected antimicrobial activity by comparing the more and less active extracts. Active extracts were not the most abundant in polyphenols but contained higher concentrations of two metabolites. After tentative annotation of these metabolites, one of them was identified and confirmed to be 7-methylxanthine. When tested alone, 7-methylxanthine did not display antibacterial activity. However, a possible cocktail effect due to the synergistic activity of this molecule along with other compounds in the cocoa bean shell extracts cannot be neglected. In conclusion, cocoa bean shell could be a functional ingredient with benefits for human health as it exhibited antibacterial activity against S. mutans. However, the antimicrobial mechanisms still need to be confirmed.
Collapse
Affiliation(s)
- Olga Rojo-Poveda
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| | - Sofia Oliveira Ribeiro
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - Cèlia Anton-Sales
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - Flore Keymeulen
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - Letricia Barbosa-Pereira
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Cédric Delporte
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
- Analytical Platform of the Faculty of Pharmacy (APFP), Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - Giuseppe Zeppa
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| | - Caroline Stévigny
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
22
|
PROMANCOA Modular Technology for the Valorization of Mango (Mangifera indica L.) and Cocoa (Theobroma cacao L.) Agricultural Biowastes. Processes (Basel) 2021. [DOI: 10.3390/pr9081312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PROMANCOA modular technology (PMT) aims at the development of modular agricultural biowaste valorization of mango (Mangifera indica L.) and cocoa (Theobroma cacao L.) cultivars within the concept of circular economy in agriculture management. The modular design includes four modules: (1) green raw material (GRM) selection and collection, (2) GRM processing, (3) GRM extraction, in order to obtain bioactive green extracts (BGE) and bioactive green ingredients (BGI), and (4) quality control, which lead to formula components for food, feed, nutraceutical and/or cosmeceutical products. PMT was applied to mango stem bark and tree branches, and cocoa pod husk and bean shells, from cultivars of mango and cocoa in provinces of the Dominican Republic (DR). PMT might be applied to other agricultural biowastes, where a potential of value-added BGE/BGI may be present. Alongside the market potential of these bioactive ingredients, the reduction of carbon dioxide and methane emissions of agricultural biowastes would be a significant contribution in order to reduce the greenhouse effect of these residuals.
Collapse
|
23
|
Rojo-Poveda O, Barbosa-Pereira L, El Khattabi C, Youl EN, Bertolino M, Delporte C, Pochet S, Stévigny C. Polyphenolic and Methylxanthine Bioaccessibility of Cocoa Bean Shell Functional Biscuits: Metabolomics Approach and Intestinal Permeability through Caco-2 Cell Models. Antioxidants (Basel) 2020; 9:E1164. [PMID: 33266403 PMCID: PMC7700373 DOI: 10.3390/antiox9111164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022] Open
Abstract
Cocoa bean shell (CBS), a by-product with considerable concentrations of bioactive compounds and proven biofunctional potential, has been demonstrated to be a suitable ingredient for high-fiber functional biscuits adapted to diabetic consumers. In this work, the in vitro bioaccessibility and intestinal absorption of polyphenols and methylxanthines contained in these biscuits were evaluated, and the effect of the food matrix was studied. Biscuits containing CBS and the CBS alone underwent in vitro digestion followed by an intestinal permeability study. The results confirmed that compounds were less bioavailable in the presence of a food matrix, although the digestion contributed to their release from this matrix, increasing the concentrations available at the intestinal level and making them capable of promoting antioxidant and antidiabetic activities. After digestion, CBS biscuits were shown to possess α-glucosidase inhibition capacity comparable to that of acarbose. Moreover, the presence of the food matrix improved the stability of polyphenols throughout the digestion process. Intestinal absorption of flavan-3-ols seemed to be limited to a maximum threshold and was therefore independent of the sample, while procyanidin was not absorbed. Methylxanthine absorption was high and was boosted by the presence of the food matrix. The results confirmed the biofunctional potential of CBS-based biscuits.
Collapse
Affiliation(s)
- Olga Rojo-Poveda
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.D.); (C.S.)
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (L.B.-P.); (M.B.)
| | - Letricia Barbosa-Pereira
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (L.B.-P.); (M.B.)
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Charaf El Khattabi
- Laboratory of Pharmacology, Pharmacotherapy and Pharmaceutical Care, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.E.K.); (E.N.H.Y.); (S.P.)
| | - Estelle N.H. Youl
- Laboratory of Pharmacology, Pharmacotherapy and Pharmaceutical Care, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.E.K.); (E.N.H.Y.); (S.P.)
- Laboratory of Drug Development, Faculty of Medicine and Pharmacy, Université Joseph Ki-Zerbo, BP 958 Ouagadougou 09, Burkina Faso
| | - Marta Bertolino
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (L.B.-P.); (M.B.)
| | - Cédric Delporte
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.D.); (C.S.)
- Analytical Platform of the Faculty of Pharmacy (APFP), Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Stéphanie Pochet
- Laboratory of Pharmacology, Pharmacotherapy and Pharmaceutical Care, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.E.K.); (E.N.H.Y.); (S.P.)
| | - Caroline Stévigny
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.D.); (C.S.)
| |
Collapse
|
24
|
Cantele C, Bertolino M, Bakro F, Giordano M, Jędryczka M, Cardenia V. Antioxidant Effects of Hemp ( Cannabis sativa L.) Inflorescence Extract in Stripped Linseed Oil. Antioxidants (Basel) 2020; 9:E1131. [PMID: 33202647 PMCID: PMC7697792 DOI: 10.3390/antiox9111131] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
The ability of hemp (Cannabis sativa L.) inflorescence extract to counteract lipid oxidation was studied in stripped linseed oil. The ethanolic extract was characterized in terms of terpenes (6.00 mg/mL), cannabidiol (4.99% w/w), phenolic compounds (1.80 mg gallic acid equivalents (GAE)/mL), antiradical, and metal ion-chelating activities (50% effective concentration (EC50) of 2.47 mg/mL and 0.39 mg/mL, respectively). The stripped linseed oil, used as control (CO), was mixed with hemp extract (HO) or α-tocopherol (EO) at a ratio of 0.6% (w/w) and stored for 7 days in darkness at 40 °C. Hemp extract reduced the oxidation and lipolysis processes. At the end of the storage, HO showed a significantly higher level of α-linolenic acid (ALA; 26.64 g/100 g), lower peroxide value (PV) (21.19 meq O2/kg oil), and lower hexanal content (7.67 mmol/kg oil) than those found in the control. In contrast, EO showed a marked lipolysis (the free fatty acids increased by 42.57%) and a noticeable oxidation, since the ALA content decreased by 2.10% and a PV of 50 meq O2/kg oil was observed. This study demonstrates that hemp inflorescences can be used as a source of natural antioxidants in vegetable oils and lipid products to retard their oxidation, especially those characterized by a high degree of unsaturation.
Collapse
Affiliation(s)
- Carolina Cantele
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco (TO) 10095, Italy; (C.C.); (M.B.); (M.G.)
| | - Marta Bertolino
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco (TO) 10095, Italy; (C.C.); (M.B.); (M.G.)
| | - Fatema Bakro
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska Str. 34, 60-479 Poznan, Poland; (F.B.); (M.J.)
| | - Manuela Giordano
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco (TO) 10095, Italy; (C.C.); (M.B.); (M.G.)
| | - Małgorzata Jędryczka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska Str. 34, 60-479 Poznan, Poland; (F.B.); (M.J.)
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco (TO) 10095, Italy; (C.C.); (M.B.); (M.G.)
| |
Collapse
|
25
|
Physical Properties and Consumer Evaluation of Cocoa Bean Shell-Functionalized Biscuits Adapted for Diabetic Consumers by the Replacement of Sucrose with Tagatose. Foods 2020; 9:foods9060814. [PMID: 32575809 PMCID: PMC7353579 DOI: 10.3390/foods9060814] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/09/2023] Open
Abstract
The cocoa bean shell (CBS), a by-product of the cocoa industry, has been reported to be rich in fiber and polyphenols, which could contribute to reducing the metabolism of sugars and glucose adsorption. The production of CBS-based biscuits in which sucrose is replaced with tagatose (a low-glycemic sugar with prebiotic properties), benefiting diabetic consumers, is proposed. Six prototype biscuits were produced using sucrose, tagatose, and CBS powder at 0%, 10%, and 20% as a wheat flour replacement. Biscuits were studied in terms of fiber content, and those with 10% and 20% CBS showed to contain 5.66% and 8.70–8.71% of total dietary fiber, respectively. Moreover, the physicochemical and structural properties of the biscuits were studied to evaluate their differences due to the use of sucrose and tagatose combined with CBS. Significant effects mainly caused by the reducing nature and lower solubility of tagatose with respect to sugar, and the water retention capacities of CBS were observed. Finally, the biscuits were evaluated by performing a consumer acceptance evaluation, and their perceptible sensorial differences were studied by performing a Napping® sensory characterization. CBS-based biscuits represent an interesting possibility for cocoa by-product revalorization, although an optimized recipe is recommended, especially when employing tagatose.
Collapse
|