1
|
Ninčević Grassino A, Karlović S, Dujmić F, Rimac Brnčić S, Badanjak Sabolović M, Brnčić M. Effects of Hot Air, Vacuum, and Conductive Drying on the Fatty Acid Profile of Cucurbita maxima Pulp and Its Processing By-Products. Foods 2024; 14:57. [PMID: 39796349 PMCID: PMC11720293 DOI: 10.3390/foods14010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Considering the short shelf life of fresh pumpkin due to its high water content and the extensive use of dried pumpkin in the food industry, it is necessary to find an efficient drying method that minimizes water activity and preserves nutritional properties. In this study, the effects of hot air drying (HAD), vacuum drying (VAD), and conductive drying (CD) at 50, 60, and 70 °C on fatty acid profiles were investigated to determine optimal drying conditions that preserve fatty acid (FA) quality and associated nutritional benefits. Results showed that drying methods had a significant effect (p < 0.05) on fatty acid composition and yield, resulting in different amounts of palmitic, oleic, linoleic, and linolenic acids as major FAs compared to fresh pulp. The saturated FA content was higher in CD pulp (up to 42.37%), followed by HAD and VAD. Oleic acid, as the most important representative of monounsaturated FAs, came from VAD (up to 30.64%). Linoleic and linolenic acid, as the most important polyunsaturated FAs of the omega-6 and omega-3 fatty acids, were found in higher proportions in CD pulp at 50 and 60 °C (up to 31.12%) and HAD pulp at 60 and 70 °C with an airflow velocity of 1.5 m/s (up to 39.70%). In addition, the peel and seeds, the by-products resulting from the processing of the fruit pulp, were also evaluated with regard to the fatty acid profile. Two fractions also contained the four major FAs in representative amounts, indicating their valuable reuse.
Collapse
Affiliation(s)
- Antonela Ninčević Grassino
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (S.K.); (F.D.); (S.R.B.); (M.B.S.)
| | | | | | | | | | - Mladen Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (S.K.); (F.D.); (S.R.B.); (M.B.S.)
| |
Collapse
|
2
|
Basile G, De Luca L, Sorrentino G, Calabrese M, Esposito M, Pizzolongo F, Romano R. Green technologies for extracting plant waste functional ingredients and new food formulation: A review. J Food Sci 2024; 89:8156-8174. [PMID: 39495566 DOI: 10.1111/1750-3841.17487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 11/06/2024]
Abstract
Nowadays, there is a growing interest in food waste recovery by both consumers and companies. Food waste of plant origin is a source of bioactive compounds, such as phenolic acids, anthocyanins, flavonoids, phytosterols, carotenoids, and tocopherols, with well-known antioxidant, anti-glycemic, and antimicrobial properties. The use of green and sustainable technologies to recover bioactive compounds from food waste is a possible solution to valorize waste following the principles of green chemistry. Furthermore, today's consumers are more attracted, informed, and aware of the benefits associated with the consumption of functional foods, and with this in mind, the use of extracts rich in beneficial compounds obtained by green technologies from food waste can be a valid alternative to prepare functional foods. In this review, the recovery of polyphenols and fibers with green technologies from food waste for the formulation of functional foods was presented.
Collapse
Affiliation(s)
- Giulia Basile
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Lucia De Luca
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Giovanni Sorrentino
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Martina Calabrese
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Mariarca Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Fabiana Pizzolongo
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| |
Collapse
|
3
|
Grassino AN, Karlović S, Šošo L, Dujmić F, Sabolović MB, Marelja M, Brnčić M. Influence of Different Drying Processes on the Chemical and Texture Profile of Cucurbita maxima Pulp. Foods 2024; 13:520. [PMID: 38397497 PMCID: PMC10888355 DOI: 10.3390/foods13040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The effects of hot air (HAD), vacuum (VAD) and conductive (CD) drying on the chemical and textural profiles of Cucurbita maxima pulp were investigated to find suitable drying conditions to avoid postharvest losses of pumpkin. The results showed that the drying methods had a significant effect (p < 0.05) on the chemical and textural profiles of pumpkin pulp. The ash content was lower in VAD (up to 7.65%) than in HAD (up to 9.88%) and CD pulp (up to 9.21%). The samples of HAD, CD and VAD had a higher fat content, up to 3.07, 2.66 and 2.51%, respectively, than fresh pulp (1.55%). The total fibre content is lower for VAD (up to 8.78%) than for HAD (up to 15.43%) and CD pulp (13.94%). HAD pulp at 70 °C (~15.51%) and VAD and CD pulp processed between 50 and 60 °C (~22%) are good sources of protein. HAD and CD pulp at 70 °C and VAD at 50 °C resulted in a high sugar content (up to 83.23%). In addition to drying, the extraction time of 40 min used in ultrasound-assisted extraction is optimal, especially for protein and sugar recovery in dried samples. Drying also led to strong changes in the textural properties of the pulp, so that an excellent dried intermediate product is the one obtained using HAD at a temperature of 70 °C and an airflow of 0.5 m/s.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mladen Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (A.N.G.); (S.K.); (L.Š.); (F.D.); (M.B.S.); (M.M.)
| |
Collapse
|
4
|
Solaberrieta I, Mellinas AC, Espagnol J, Hamzaoui M, Jiménez A, Garrigós MC. Valorization of Tomato Seed By-Products as a Source of Fatty Acids and Bioactive Compounds by Using Advanced Extraction Techniques. Foods 2022; 11:foods11162408. [PMID: 36010408 PMCID: PMC9407203 DOI: 10.3390/foods11162408] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 01/22/2023] Open
Abstract
In this work, lipids and bioactive compounds from tomato seed by-products were extracted and compared by using advanced extraction techniques, such as microwave-assisted extraction (MAE) and supercritical fluid extraction (SFE). The influence of different extraction parameters, including extraction temperature (T), time (t) and solvent volume (V) for MAE as well as extraction temperature (T), pressure (P) and flow rate (F) for SFE-CO2, was evaluated on tomato seed oil (TSO) yield and fatty acids composition using response surface methodology (RSM). Optimum extraction conditions for MAE were 56.2 °C, 29.0 min, and 67.6 mL, whereas conditions of 60.2 °C, 400.0 bar, and 64.6 g min−1 were found for SFE-CO2. Under these conditions, higher TSO extraction yields were obtained by MAE compared to SFE-CO2 (25.3 wt% and 16.9 wt%, respectively), while similar fatty acids profiles were found by GC in terms of FAMEs composition: methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate, accounting for around 80 wt% of unsaturated fatty acids. TSO MAE extracts showed high DPPH• radical scavenging activity which was related to the presence of tocopherols; in particular γ-tocopherol, which was found as the dominant homologue (260.3 ± 0.6 mg kgTS−1) followed by a lower amount of α-tocopherol (6.53 ± 0.12 mg kgTS−1) by HPLC-DAD. The obtained results suggested that tomato seeds are an interesting source of bioactive compounds with potential use in a wide range of nutritional and food applications, increasing the added value of this by-product, which is currently underexploited.
Collapse
Affiliation(s)
- Ignacio Solaberrieta
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, San Vicente del Raspeig, ES-03690 Alicante, Spain
| | - Ana Cristina Mellinas
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, San Vicente del Raspeig, ES-03690 Alicante, Spain
| | - Jérémy Espagnol
- Biomass Valorisation Platform, Celabor s.c.r.l., Avenue du Parc 38, 4650 Herve, Belgium
| | - Mahmoud Hamzaoui
- Biomass Valorisation Platform, Celabor s.c.r.l., Avenue du Parc 38, 4650 Herve, Belgium
| | - Alfonso Jiménez
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, San Vicente del Raspeig, ES-03690 Alicante, Spain
| | - María Carmen Garrigós
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, San Vicente del Raspeig, ES-03690 Alicante, Spain
- Correspondence:
| |
Collapse
|
5
|
Highly repeatable and selective ultrahigh-performance supercritical fluid chromatography – Mass spectrometry interclass separation in lipidomic studies. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Triacylglycerol and Fatty Acid Compositions of Blackberry, Red Raspberry, Black Raspberry, Blueberry and Cranberry Seed Oils by Ultra-Performance Convergence Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. Foods 2021; 10:foods10112530. [PMID: 34828811 PMCID: PMC8621136 DOI: 10.3390/foods10112530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
The triacylglycerol (TAG) compositions of blackberry, red raspberry, black raspberry, blueberry and cranberry seed oils were examined using ultra-performance convergence chromatography-quadrupole time-of-flight mass spectrometry (UPC2-QTOF MS). A total of 52, 53, 52, 59 and 58 TAGs were detected and tentatively identified from the blackberry, red raspberry, black raspberry, blueberry and cranberry seed oils, respectively, according to their accurate molecular weight in MS1 and fragment ion profiles in MS2. OLL was the most abundant TAG in the blackberry, red raspberry and black raspberry seed oils. Furthermore, the fatty acid compositions of the five berry seed oils were directly determined by gas chromatography coupled with mass spectrometry (GC-MS). In addition, the seed oils had total phenolic contents ranging 13.68–177.06 µmol GAE (gallic acid equivalent)/L oil, and significant scavenging capacities against DPPH, peroxyl, and ABTS+ radicals. These results indicated that the combination of UPC2 and QTOF MS could effectively identify and semi-quantify the TAGs compositions of the berry seed oils with sn-position information for the fatty acids. Understanding the TAGs compositions of these berry seed oils could improve the utilization of these potentially high nutritional value oils for human health.
Collapse
|
7
|
Nutrigenomics of Dietary Lipids. Antioxidants (Basel) 2021; 10:antiox10070994. [PMID: 34206632 PMCID: PMC8300813 DOI: 10.3390/antiox10070994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary lipids have a major role in nutrition, not only for their fuel value, but also as essential and bioactive nutrients. This narrative review aims to describe the current evidence on nutrigenomic effects of dietary lipids. Firstly, the different chemical and biological properties of fatty acids contained both in plant- and animal-based food are illustrated. A description of lipid bioavailability, bioaccessibility, and lipotoxicity is provided, together with an overview of the modulatory role of lipids as pro- or anti-inflammatory agents. Current findings concerning the metabolic impact of lipids on gene expression, epigenome, and gut microbiome in animal and human studies are summarized. Finally, the effect of the individual’s genetic make-up on lipid metabolism is described. The main goal is to provide an overview about the interaction between dietary lipids and the genome, by identifying and discussing recent scientific evidence, recognizing strengths and weaknesses, to address future investigations and fill the gaps in the current knowledge on metabolic impact of dietary fats on health.
Collapse
|
8
|
Oils and Bioactive Lipids: Quality, Stability, and Functionality. Foods 2021; 10:foods10061248. [PMID: 34072773 PMCID: PMC8228532 DOI: 10.3390/foods10061248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
The dietary consumption of positive bioactive lipids has been shown to be beneficial to human health and to decrease the risk of non-communicable diseases [...].
Collapse
|