1
|
Beaulieu JC, Boue SM, Goufo P. Health-promoting germinated rice and value-added foods: a comprehensive and systematic review of germination effects on brown rice. Crit Rev Food Sci Nutr 2023; 63:11570-11603. [PMID: 35816149 DOI: 10.1080/10408398.2022.2094887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the last 30 years, thousands of articles have appeared examining the effects of soaking and germinating brown rice (BR). Variable germination conditions and methods have been employed to measure different health-beneficial parameters in a diverse germplasm of BR. Research results may therefore appear inconsistent with occasional anomalies, and it may be difficult to reach consensus concerning expected trends. Herein, we amassed a comprehensive review on germinated brown rice (GBR), attempting to codify 133 peer-reviewed articles regarding the effects on 164 chemical parameters related to health and nutrition in BR and in value-added food products. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-2020) approach was used to direct the flow of the literature search. A pair-wise comparison t-test was performed to deliver an overall approach indicating when a given compound has been found to significantly increase or decrease through germination, which was grouped into GABA and polyamines, γ-Oryzanol and phytosterols, phenolic compounds, vitamins, proteins and amino acids, starchy carbohydrates, free sugars, lipids, minerals and phytic acid. This resource will stimulate interest in germinating rice and optimistically help increase both production and consumption of highly nutritious, health-beneficial rice with pigmented bran.
Collapse
Affiliation(s)
- John C Beaulieu
- Food Processing & Sensory Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Stephen M Boue
- Food Processing & Sensory Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Piebiep Goufo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
2
|
Effect of Fermentation on the Biochemical Parameters Antioxidant Capacity and Dispersed Composition of Plant Beverages Based on Barley and Hemp Seeds. FERMENTATION 2022. [DOI: 10.3390/fermentation8080384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Enzymatic processes play a key role in the production of grain-containing food due to their effect on the nutritional properties, rheological characteristics, and contribution to improving the functional and antioxidant proprieties. Eight samples of beverages based on barley grain and hemp seeds were produced (control beverages and beverages fermented by bifidobacteria and propionic acid bacteria). It was found that lactic acid accumulated during fermentation alongside a gradual shift in the pH level in the acidic direction. A comparative analysis of the DPPH activity revealed the highest values for barley-based beverages, ranging from 71.0 to 100.7%, while for the hemp seed-based beverages, the DPPH activity was 64.1–97.9%. The maximum values of DPPH activity were observed during fermentation with a combination of bifidobacteria and propionic acid bacteria concentrates. The highest concentration of polyphenolic compounds and flavonoids was found in barley-based beverages fermented with Propionibacterium freudenreichii (1.26 mg GAE/g and 0.11 mg EQ/g) and a combination of Propionibacterium freudenreichii and Bifidobacterium longum (1.24 mg GAE/g and 0.14 mg EQ/g). Studies have shown an increase in the nutrient content for fermented beverages compared to the control samples. The barley-based beverages exhibited the largest average dynamic particle diameter, and all beverage samples showed a more uniform particle size distribution after microbial fermentation.
Collapse
|
3
|
Formulation of germinated brown rice fermented products functionalized by probiotics. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Lee XY, Tan JS, Cheng LH. Gamma Aminobutyric Acid (GABA) Enrichment in Plant-Based Food – A Mini Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2097257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- X. Y. Lee
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - J. S. Tan
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - L. H. Cheng
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
5
|
Beaulieu JC, Moreau RA, Powell MJ, Obando-Ulloa JM. Lipid Profiles in Preliminary Germinated Brown Rice Beverages Compared to Non-Germinated Brown and White Rice Beverages. Foods 2022; 11:foods11020220. [PMID: 35053952 PMCID: PMC8774854 DOI: 10.3390/foods11020220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 02/01/2023] Open
Abstract
Brown rice is nutritionally superior to white rice, yet oil rancidity can be problematic during processing and storage regarding sensory attributes. Germinating brown rice is known to generally increase some health-promoting compounds. In response to increasing the consumption of plant-based beverages, we sprouted unstabilized brown rice, using green technologies and saccharification enzymes for value-added beverages. ‘Rondo’ paddy rice was dehulled, sorted and germinated, and beverages were produced and compared against non-germinated brown and white brewers rice beverages. The preliminary germinated brown rice beverage contained significantly higher concentrations of total lipids, diacylglycerols, triacylglycerols, free sterols, phytosterol esters and oryzanols than both non-germinated brown and white rice beverages. White rice beverages had significantly higher free fatty acids. Significant lipid losses occurred during sieving, yet novel germinated brown rice beverages contained appreciable levels of valuable health-beneficial lipids, which appeared to form natural emulsions. Further pilot plant investigations should be scaled-up for pasteurization and adjusted through emulsification to ameliorate sieving losses.
Collapse
Affiliation(s)
- John C. Beaulieu
- Food Processing & Sensory Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA
- Correspondence: ; Tel.: +1-504-286-4471
| | - Robert A. Moreau
- Sustainable Biofuels and CoProducts Research Unit, Eastern Regional Research Center, USDA, ARS, 600 East Mermaid, Lane, Wyndmoor, PA 19038, USA; (R.A.M.); (M.J.P.)
| | - Michael J. Powell
- Sustainable Biofuels and CoProducts Research Unit, Eastern Regional Research Center, USDA, ARS, 600 East Mermaid, Lane, Wyndmoor, PA 19038, USA; (R.A.M.); (M.J.P.)
| | - Javier M. Obando-Ulloa
- Doctorate Program in Natural Science for Development (DOCINADE) and Agronomy Engineering School, Costa Rica Institute of Technology (ITCR), San Carlos Technology Local Campus, P.O. Box 223-21001, Ciudad Quesada, San Carlos 30101, Alajuela, Costa Rica;
| |
Collapse
|
6
|
Miyahira RF, Lopes JDO, Antunes AEC. The Use of Sprouts to Improve the Nutritional Value of Food Products: A Brief Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:143-152. [PMID: 33719022 DOI: 10.1007/s11130-021-00888-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Sprouts are vegetable foods rich in phytonutrients, such as glucosinolates, phenolics, and isoflavones. Many studies have shown that sprouts also have high concentrations of vitamins and minerals. In addition to the high concentration of nutrients, sprouts can present a reduction of anti-nutritional factors such as phytates, tannins, and oxalates, which increases the bioaccessibility of minerals. However, their nutritional composition depends on several factors, such as the type of sprout and the germination conditions. In recent years, these foods have been highly demanded because they are associated to many health benefits. Moreover, germination is an easy and fast process, and does not depend on specific climatic conditions (potentially more sustainable to growth). The use of sprouts for the elaboration of food products can be a good strategy to increase the nutritional value of certain products that are widely consumed worldwide. In this sense, studies that evaluated the impact of adding sprouted grains on the nutritional value of some products, as well as the effect on their sensory properties were searched in the scientific literature. Most of them used germinated grain flours to replace wheat flour in food products. The satisfactory results of these products were associated with the type of sprout used and with the level of replacement of the wheat flour. This review briefly explored the nutritional benefits and the sensory acceptance of food products made with added sprouts.
Collapse
Affiliation(s)
- Roberta Fontanive Miyahira
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 12° andar, sala 12006 D - Maracanã, Rio de Janeiro/RJ, CEP: 20550-013, Brazil.
- School of Applied Sciences, State University of Campinas (FCA/UNICAMP), Limeira, SP, Brazil.
| | - Jean de Oliveira Lopes
- School of Applied Sciences, State University of Campinas (FCA/UNICAMP), Limeira, SP, Brazil
| | | |
Collapse
|
7
|
Beaulieu JC, Reed SS, Obando-Ulloa JM, Boue SM, Cole MR. Green Processing, Germinating and Wet Milling Brown Rice ( Oryza sativa) for Beverages: Physicochemical Effects. Foods 2020; 9:foods9081016. [PMID: 32751212 PMCID: PMC7466225 DOI: 10.3390/foods9081016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022] Open
Abstract
Plant-based beverage consumption is increasing markedly. Value-added dehulled rice (Oryza sativa) germination was investigated to improve beverage qualities. Germinating brown rice has been shown to increase health-promoting compounds. Utilizing green processing, wholesome constituents, including bran, vitamins, minerals, oils, fiber and proteins should should convey forward into germinated brown rice beverages. Rapid visco-analyzer (RVA) data and trends established that brown rice, preheated brown rice and germinated brown rice had higher pasting temperatures than white rice. As pasting temperature in similar samples may be related to gelatinization, RVA helped guide the free-flowing processing protocol using temperatures slightly above those previously reported for Rondo gelatinization. Particle size analysis and viscometric evaluations indicate that the developed sprouted brown rice beverage is on track to have properties close to commercial samples, even though the sprouted brown rice beverage developed has no additives, fortifications, added oils or salts. Phenolics and γ-aminobutyric acid increased slightly in germinated brown rice, however, increases were not maintained throughout most stages of processing. Significantly lower inorganic arsenic levels (113 ng/g) were found in germinated (sprouted) brown rice, compared to Rondo white and brown rice, which is far below the USA threshold level of 200 ng/g.
Collapse
Affiliation(s)
- John C. Beaulieu
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA; (S.S.R.); (S.M.B.)
- Correspondence:
| | - Shawndrika S. Reed
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA; (S.S.R.); (S.M.B.)
| | - Javier M. Obando-Ulloa
- Doctorate Program in Natural Science for Development (DOCINADE) and Agronomy Engineering School, Costa Rica Institute of Technology (ITCR), San Carlos Technology Local Campus, PO Box 223-21001, Ciudad Quesada, San Carlos, Alajuela 30101, Costa Rica;
| | - Stephen M. Boue
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA; (S.S.R.); (S.M.B.)
| | - Marsha R. Cole
- Department of Chemistry, College of Engineering and Science, Louisiana Tech University, Carson-Taylor Hall, 343, PO Box 10348, Ruston, LA 71272, USA;
| |
Collapse
|