1
|
Rusco G, Paventi G, Di Iorio M, Spano M, Cerolini S, Iaffaldano N. Dataset on sperm quality parameters and NMR-detected changes in metabolic profile of fresh and frozen turkey spermatozoa related to two different reproductive period ages. Data Brief 2024; 55:110627. [PMID: 39006350 PMCID: PMC11239457 DOI: 10.1016/j.dib.2024.110627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024] Open
Abstract
Significant changes in the quality and metabolic profile of fresh turkey sperm as a result of both cryopreservation and reproductive age have already been individually confirmed in our previous studies. This new dataset adds a relevant piece to the tangled puzzle of changes in metabolite levels affecting cryopreserved turkey sperm quality, taking into consideration two different reproductive period ages. Fresh semen samples were collected at 44 and 56 weeks of age and exposed to the cryopreservation process. All fresh and frozen-thawed samples were subjected to analysis of mobility, viability and osmotic tolerance as parameters for evaluating the sperm quality, while NMR spectroscopy was used to assess the quantitative changes in water and lipid-soluble metabolites. Our results showed that the cryopreservation process significantly affected all of the measured qualitative parameters both at 44 and 56 weeks. Concerning the metabolic profile, a greater number of quantitative changes for both water and lipid-soluble components were found in frozen semen at 56 weeks than at 44 weeks of age. These data could contribute to identifying new strategies aimed at improving freezing procedures even as reproductive age increases.
Collapse
Affiliation(s)
- Giusy Rusco
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Gianluca Paventi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Michele Di Iorio
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Mattia Spano
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Cerolini
- Department of Veterinary Medicine, University of Milano, 26900 Lodi, Italy
| | - Nicolaia Iaffaldano
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
2
|
Goppa L, Spano M, Baiguera RM, Cartabia M, Rossi P, Mannina L, Savino E. NMR-Based Characterization of Wood Decay Fungi as Promising Novel Foods: Abortiporus biennis, Fomitopsis iberica and Stereum hirsutum Mycelia as Case Studies. Foods 2023; 12:2507. [PMID: 37444245 DOI: 10.3390/foods12132507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Wood Decay Fungi (WDF) are fungi specialized in degrading wood. An interesting perspective is their use as a source of Novel Foods or food ingredients. Here, for the first time, the metabolite profiling of hydroalcoholic and organic extracts from A. biennis, F. iberica, S. hirsutum mycelia was investigated by NMR methodology. Amino acids (alanine, arginine, asparagine, aspartate, betaine, GABA, glutamate, glutamine, histidine, isoleucine, leucine, lysine, phenylalanine, threonine, tryptophan, tyrosine, valine), sugars (galactose, glucose, maltose, trehalose, mannitol), organic acids (acetate, citrate, formate, fumarate, lactate, malate, succinate), adenosine, choline, uracil and uridine were identified and quantified in the hydroalcoholic extracts, whereas the 1H spectra of organic extracts showed the presence of saturated, mono-unsaturated and di-unsaturated fatty chains, ergosterol,1,2-diacyl-sn-glycero-3-phosphatidylethanolamine, and 1,2-diacyl-sasglycero-3-phosphatidylcholine. A. biennis extracts showed the highest amino acid concentration. Some compounds were detected only in specific species: betaine and mannitol in S. hirsutum, maltose in A. biennis, galactose in F. iberica, GABA in F. iberica and S. hirsutum, and acetate in A. biennis and S. hirsutum. S. hirsutum showed the highest saturated fatty chain concentration, whereas DUFA reached the highest concentration in A. biennis. A high amount of ergosterol was measured both in A. biennis and F. iberica. The reported results can be useful in the development of WDF-based products with a high nutritional and nutraceutical value.
Collapse
Affiliation(s)
- Lorenzo Goppa
- Department of Earth and Environmental Sciences (DSTA), University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Mattia Spano
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Rebecca Michela Baiguera
- Department of Earth and Environmental Sciences (DSTA), University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Marco Cartabia
- Department of Earth and Environmental Sciences (DSTA), University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
- MOGU S.r.l., Via S. Francesco d'Assisi 4, 21020 Inarzo, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Luisa Mannina
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Elena Savino
- Department of Earth and Environmental Sciences (DSTA), University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
3
|
Spano M, Di Matteo G, Fernandez Retamozo CA, Lasalvia A, Ruggeri M, Sandri G, Cordeiro C, Sousa Silva M, Totaro Fila C, Garzoli S, Crestoni ME, Mannina L. A Multimethodological Approach for the Chemical Characterization of Edible Insects: The Case Study of Acheta domesticus. Foods 2023; 12:2331. [PMID: 37372542 DOI: 10.3390/foods12122331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Acheta domesticus (house cricket) has been recently introduced into the official European list of novel foods, representing an alternative and sustainable food source. Up to now, the chemical characterization of this edible insect has been focused only on specific classes of compounds. Here, three production batches of an A. domesticus powder were investigated by means of a multimethodological approach based on NMR, FT-ICR MS, and GC-MS methodologies. The applied analytical protocol, proposed for the first time in the study of an edible insect, allowed us to identify and quantify compounds not previously reported in crickets. In particular, methyl-branched hydrocarbons, previously identified in other insects, together with other compounds such as citrulline, formate, γ-terpinene, p-cymene, α-thujene, β-thujene, and 4-carene were detected. Amino acids, organic acids, and fatty acids were also identified and quantified. The improved knowledge of the chemical profile of this novel food opens new horizons both for the use of crickets as a food ingredient and for the use of extracts for the production of new formulations. In order to achieve this objective, studies regarding safety, biological activity, bioaccessibility, and bioavailability are needed as future perspectives in this field.
Collapse
Affiliation(s)
- Mattia Spano
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giacomo Di Matteo
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carlos Alberto Fernandez Retamozo
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alba Lasalvia
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Carlos Cordeiro
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo-Grande, 1749-016 Lisboa, Portugal
| | - Marta Sousa Silva
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo-Grande, 1749-016 Lisboa, Portugal
| | | | - Stefania Garzoli
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Maria Elisa Crestoni
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Luisa Mannina
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Ingallina C, Di Matteo G, Spano M, Acciaro E, Campiglia E, Mannina L, Sobolev AP. Byproducts of Globe Artichoke and Cauliflower Production as a New Source of Bioactive Compounds in the Green Economy Perspective: An NMR Study. Molecules 2023; 28:molecules28031363. [PMID: 36771031 PMCID: PMC9919138 DOI: 10.3390/molecules28031363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The recovery of bioactive compounds from crop byproducts leads to a new perspective way of waste reutilization as a part of the circular economy. The present study aimed at an exhaustive metabolite profile characterization of globe artichoke and cauliflower byproducts (leaves, stalks, and florets for cauliflower only) as a prerequisite for their valorization and future implementations. The metabolite profile of aqueous and organic extracts of byproducts was analyzed using the NMR-based metabolomics approach. Free amino acids, organic acids, sugars, polyols, polyphenols, amines, glucosinolates, fatty acids, phospho- and galactolipids, sterols, and sesquiterpene lactones were identified and quantified. In particular, globe artichoke byproducts are a source of health-beneficial compounds including chiro-inositol (up to 10.1 mg/g), scyllo-inositol (up to 1.8 mg/g), sesquiterpene lactones (cynaropicrin, grosheimin, dehydrocynaropicrin, up to 45.5 mg/g in total), inulins, and chlorogenic acid (up to 7.5 mg/g), whereas cauliflower byproducts enclose bioactive sulfur-containing compounds S-methyl-L-cysteine S-oxide (methiin, up to 20.7 mg/g) and glucosinolates. A variable content of all metabolites was observed depending on the crop type (globe artichoke vs. cauliflower) and the plant part (leaves vs. stalks). The results here reported can be potentially used in different ways, including the formulation of new plant biostimulants and food supplements.
Collapse
Affiliation(s)
- Cinzia Ingallina
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Giacomo Di Matteo
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Mattia Spano
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Erica Acciaro
- “Annalaura Segre” Magnetic Resonance Laboratory, Institute for Biological Systems, CNR, Via Salaria, Km 29,300, 00015 Monterotondo, Italy
| | - Enio Campiglia
- Department of Agricultural and Forest Sciences, University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| | - Luisa Mannina
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Anatoly Petrovich Sobolev
- “Annalaura Segre” Magnetic Resonance Laboratory, Institute for Biological Systems, CNR, Via Salaria, Km 29,300, 00015 Monterotondo, Italy
- Correspondence:
| |
Collapse
|
5
|
Effect of Site and Phenological Status on the Potato Bacterial Rhizomicrobiota. Microorganisms 2022; 10:microorganisms10091743. [PMID: 36144345 PMCID: PMC9501399 DOI: 10.3390/microorganisms10091743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
The potato is the fourth major food crop in the world. Its cultivation can encounter problems, resulting in poor growth and reduced yield. Plant microbiota has shown an ability to increase growth and resistance. However, in the development of effective microbiota manipulation strategies, it is essential to know the effect of environmental variables on microbiota composition and function. Here, we aimed to identify the differential impact of the site of cultivation and plant growth stage on potato rhizosphere microbiota. We performed a 16S rRNA gene amplicon sequencing analysis of rhizospheric soil collected from potato plants grown at four sites in central Italy during two phenological stages. Rhizomicrobiota was mainly composed of members of phyla Acidobacteriota, Actinobacteriota, Chloroflexi, and Proteobacteria and was affected by both the site of cultivation and the plant stages. However, cultivation sites overcome the effect of plant phenological stages. The PiCRUST analysis suggested a high abundance of functions related to the biosynthesis of the siderophore enterobactin. The presence of site-specific taxa and functional profiling of the microbiota could be further exploited in long-term studies to evaluate the possibility of developing biomarkers for traceability of the products and to exploit plant growth-promoting abilities in the native potato microbiota.
Collapse
|
6
|
Metabolomic Characterization of Pigmented and Non-Pigmented Potato Cultivars Using a Joint and Individual Variation Explained (JIVE). Foods 2022; 11:foods11121708. [PMID: 35741905 PMCID: PMC9223171 DOI: 10.3390/foods11121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Potatoes (Solanum tuberosum L.) are one of the most valuable agricultural crops, and the flesh of these tubers provides various classes of healthy compounds important for human nutrition. This work presents the results of a joint analysis of different chemical classes of compounds which provided insights on the metabolic characterization of pigmented and non-pigmented potato varieties collected from Italy. The identification of common or individual metabolic characteristics across the omic datasets (antioxidants, total polyphenolic content, polyphenols, and sugars) is conducted by Joint and Individual Variation Explained (JIVE), a data fusion multivariate approach. The common part of the multivariate model allowed the separation between non-pigmented and pigmented samples. Polyphenolic compounds were mainly responsible for the separation between purple-fleshed and red-skinned potatoes. An additional detailed analysis of the anthocyanin composition, including the acylated anthocyanins, allowed to pinpoint the diversities between the pigmented potato groups. Furthermore, the presence of an appreciable amount of hydroxycinnamic acids and anthocyanins in the purple-fleshed varieties, which are also characterized by a lower content of sugars, is found. Our results provide scientific evidence for the promotion of promising potato cultivars, which are characterized by a remarkable amount of various health benefit compounds.
Collapse
|
7
|
The Effect of Semen Cryopreservation Process on Metabolomic Profiles of Turkey Sperm as Assessed by NMR Analysis. BIOLOGY 2022; 11:biology11050642. [PMID: 35625370 PMCID: PMC9138281 DOI: 10.3390/biology11050642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022]
Abstract
Semen cryopreservation represents the main tool for preservation of biodiversity; however, in avian species, the freezing−thawing process results in a sharp reduction in sperm quality and consequently fertility. Thus, to gain a first insight into the molecular basis of the cryopreservation of turkey sperm, the NMR-assessed metabolite profiles of fresh and frozen−thawed samples were herein investigated and compared with sperm qualitative parameters. Cryopreservation decreased the sperm viability, mobility, and osmotic tolerance of frozen−thawed samples. This decrease in sperm quality was associated with the variation in the levels of some metabolites in both aqueous and lipid sperm extracts, as investigated by NMR analysis. Higher amounts of the amino acids Ala, Ile, Leu, Phe, Tyr, and Val were found in fresh than in frozen−thawed sperm; on the contrary, Gly content increased after cryopreservation. A positive correlation (p < 0.01) between the amino acid levels and all qualitative parameters was found, except in the case of Gly, the levels of which were negatively correlated (p < 0.01) with sperm quality. Other water-soluble compounds, namely formate, lactate, AMP, creatine, and carnitine, turned out to be present at higher concentrations in fresh sperm, whereas cryopreserved samples showed increased levels of citrate and acetyl-carnitine. Frozen−thawed sperm also showed decreases in cholesterol and polyunsaturated fatty acids, whereas saturated fatty acids were found to be higher in cryopreserved than in fresh sperm. Interestingly, lactate, carnitine (p < 0.01), AMP, creatine, cholesterol, and phosphatidylcholine (p < 0.05) levels were positively correlated with all sperm quality parameters, whereas citrate (p < 0.01), fumarate, acetyl-carnitine, and saturated fatty acids (p < 0.05) showed negative correlations. A detailed discussion aimed at explaining these correlations in the sperm cell context is provided, returning a clearer scenario of metabolic changes occurring in turkey sperm cryopreservation.
Collapse
|
8
|
D’Amelia V, Sarais G, Fais G, Dessì D, Giannini V, Garramone R, Carputo D, Melito S. Biochemical Characterization and Effects of Cooking Methods on Main Phytochemicals of Red and Purple Potato Tubers, a Natural Functional Food. Foods 2022; 11:foods11030384. [PMID: 35159533 PMCID: PMC8834363 DOI: 10.3390/foods11030384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Potato is a staple food crop and an important source of dietary energy. Its tubers contain several essential amino acids, vitamins, minerals and phytochemicals that contribute to the nutritional value of this important product. Recently, scientific interest has focused on purple and red potatoes that, due to the presence of anthocyanins, may be considered as natural powerful functional food. The aim of this study was to evaluate the characteristics of pigmented varieties, the types of anthocyanins accumulated and the level of both beneficial phytochemicals (vitamin C and chlorogenic acids, CGAs) and anti-nutritional compounds (glycoalkaloids) following various cooking methods. The analyses described the presence of a mix of several acylated anthocyanins in pigmented tubers along with high level of CGA. The amount of antioxidants was differently affected by heat treatments according to the type of molecule and the cooking methods used. In some cases, the beneficial compounds were made more available by heat treatments for the analytical detection as compared to raw materials. Data reported here describe both the agronomic properties of these pigmented varieties and the effects of food processing methods on bioactive molecules contained in this natural functional food. They may provide useful information for breeders aiming to develop new varieties that could include desirable agronomical and industrial processing traits.
Collapse
Affiliation(s)
- Vincenzo D’Amelia
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy;
| | - Giorgia Sarais
- Food Toxicology Unit, Department of Life and Environmental Science, Campus of Monserrato, University of Cagliari, 09042 Cagliari, Italy; (G.F.); (D.D.)
- Correspondence:
| | - Giacomo Fais
- Food Toxicology Unit, Department of Life and Environmental Science, Campus of Monserrato, University of Cagliari, 09042 Cagliari, Italy; (G.F.); (D.D.)
| | - Debora Dessì
- Food Toxicology Unit, Department of Life and Environmental Science, Campus of Monserrato, University of Cagliari, 09042 Cagliari, Italy; (G.F.); (D.D.)
| | - Vittoria Giannini
- Department of Agricultural Sciences, University of Sassari, Via Enrico de Nicola, 07100 Sassari, Italy; (V.G.); (S.M.)
| | - Raffaele Garramone
- Department of Agricultural Sciences, University of Naples, Via Università, 100, 80055 Portici, Italy; (R.G.); (D.C.)
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples, Via Università, 100, 80055 Portici, Italy; (R.G.); (D.C.)
| | - Sara Melito
- Department of Agricultural Sciences, University of Sassari, Via Enrico de Nicola, 07100 Sassari, Italy; (V.G.); (S.M.)
| |
Collapse
|
9
|
Ullah H, Sommella E, Santarcangelo C, D’Avino D, Rossi A, Dacrema M, Minno AD, Di Matteo G, Mannina L, Campiglia P, Magni P, Daglia M. Hydroethanolic Extract of Prunus domestica L.: Metabolite Profiling and In Vitro Modulation of Molecular Mechanisms Associated to Cardiometabolic Diseases. Nutrients 2022; 14:340. [PMID: 35057523 PMCID: PMC8778072 DOI: 10.3390/nu14020340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
High consumption of fruit and vegetables has an inverse association with cardiometabolic risk factors. This study aimed to chemically characterize the hydroethanolic extract of P. domestica subsp. syriaca fruit pulp and evaluate its inhibitory activity against metabolic enzymes and production of proinflammatory mediators. Ultra-high-performance liquid chromatography high-resolution mass spectrometry(UHPLC-HRMS) analysis showed the presence of hydroxycinnamic acids, flavanols, and glycoside flavonols, while nuclear magnetic resonance(NMR) analysis showed, among saccharides, an abundant presence of glucose. P. domestica fruit extract inhibited α-amylase, α-glucosidase, pancreatic lipase, and HMG CoA reductase enzyme activities, with IC50 values of 7.01 mg/mL, 6.4 mg/mL, 6.0 mg/mL, and 2.5 mg/mL, respectively. P. domestica fruit extract inhibited lipopolysaccharide-induced production of nitrite, interleukin-1 β and PGE2 in activated J774 macrophages. The findings of the present study indicate that P. domestica fruit extracts positively modulate in vitro a series of molecular mechanisms involved in the pathophysiology of cardiometabolic diseases. Further research is necessary to better characterize these properties and their potential application for human health.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, NA, Italy; (H.U.); (C.S.); (D.D.); (A.R.); (M.D.); (A.D.M.)
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy; (E.S.); (P.C.)
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, NA, Italy; (H.U.); (C.S.); (D.D.); (A.R.); (M.D.); (A.D.M.)
| | - Danilo D’Avino
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, NA, Italy; (H.U.); (C.S.); (D.D.); (A.R.); (M.D.); (A.D.M.)
| | - Antonietta Rossi
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, NA, Italy; (H.U.); (C.S.); (D.D.); (A.R.); (M.D.); (A.D.M.)
| | - Marco Dacrema
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, NA, Italy; (H.U.); (C.S.); (D.D.); (A.R.); (M.D.); (A.D.M.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, NA, Italy; (H.U.); (C.S.); (D.D.); (A.R.); (M.D.); (A.D.M.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| | - Giacomo Di Matteo
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, RM, Italy; (G.D.M.); (L.M.)
| | - Luisa Mannina
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, RM, Italy; (G.D.M.); (L.M.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy; (E.S.); (P.C.)
- European Biomedical Research Institute of Salerno, Via De Renzi 50, 84125 Salerno, SA, Italy
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, MI, Italy
- IRCCS MultiMedica, Sesto San Giovanni, 20099 Milan, MI, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, NA, Italy; (H.U.); (C.S.); (D.D.); (A.R.); (M.D.); (A.D.M.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
10
|
do Prado Apparecido R, Barros Lopes TI, Braz Alcantara G. NMR-based foodomics of common tubers and roots. J Pharm Biomed Anal 2021; 209:114527. [PMID: 34906919 DOI: 10.1016/j.jpba.2021.114527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 01/20/2023]
Abstract
Common roots and tubers such as arracacha, Asterix potato, cassava, potato, sweet potato, taro, and yam are consumed by millions of people. These foods are an integral part of the diet in developing countries and are nutritionally important as energy reserves due to their carbohydrate content. Although many studies have been performed on these foods, comparative chemical profiles have been still poorly evaluated. In this work, we applied nuclear magnetic resonance (NMR) analysis associated with chemometrics to evaluate the chemical composition of extracts obtained in deuterated water from roots and tubers that are commercially consumed in Brazil and the rest of the world. From the 31 metabolites characterized in the extracts, 22 were quantified. Multivariate analyses showed 8 metabolites which were primary responsible for the distinction between samples, including choline, γ-aminobutyrate (GABA), glutamine, asparagine, isoleucine, fructose, glucose, and sucrose. Thus, our work shows important information on the chemical composition in addition to the mere carbohydrate content of these food matrices. This knowledge can provide information about food safety and beneficial nutritional values of the studied tubers and roots, which can be useful to consumers and the food industry.
Collapse
Affiliation(s)
- Rafael do Prado Apparecido
- Universidade Federal de Mato Grosso do Sul (UFMS), Instituto de Química, CP 549, CEP 79074-460 Campo Grande, MS, Brazil
| | - Thiago Inácio Barros Lopes
- Universidade Federal de Mato Grosso do Sul (UFMS), Instituto de Química, CP 549, CEP 79074-460 Campo Grande, MS, Brazil
| | - Glaucia Braz Alcantara
- Universidade Federal de Mato Grosso do Sul (UFMS), Instituto de Química, CP 549, CEP 79074-460 Campo Grande, MS, Brazil.
| |
Collapse
|
11
|
Spano M, Maccelli A, Di Matteo G, Ingallina C, Biava M, Crestoni ME, Bardaud JX, Giusti AM, Mariano A, Scotto D’Abusco A, Sobolev AP, Lasalvia A, Fornarini S, Mannina L. Metabolomic Profiling of Fresh Goji ( Lycium barbarum L.) Berries from Two Cultivars Grown in Central Italy: A Multi-Methodological Approach. Molecules 2021; 26:5412. [PMID: 34500850 PMCID: PMC8433735 DOI: 10.3390/molecules26175412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
The metabolite profile of fresh Goji berries from two cultivars, namely Big Lifeberry (BL) and Sweet Lifeberry (SL), grown in the Lazio region (Central Italy) and harvested at two different periods, August and October, corresponding at the beginning and the end of the maturation, was characterized by means of nuclear magnetic resonance (NMR) and electrospray ionization Fourier transform ion cyclotron resonance (ESI FT-ICR MS) methodologies. Several classes of compounds such as sugars, amino acids, organic acids, fatty acids, polyphenols, and terpenes were identified and quantified in hydroalcoholic and organic Bligh-Dyer extracts. Sweet Lifeberry extracts were characterized by a higher content of sucrose with respect to the Big Lifeberry ones and high levels of amino acids (glycine, betaine, proline) were observed in SL berries harvested in October. Spectrophotometric analysis of chlorophylls and total carotenoids was also carried out, showing a decrease of carotenoids during the time. These results can be useful not only to valorize local products but also to suggest the best harvesting period to obtain a product with a chemical composition suitable for specific industrial use. Finally, preliminary studies regarding both the chemical characterization of Goji leaves generally considered a waste product, and the biological activity of Big Lifeberry berries extracts was also investigated. Goji leaves showed a chemical profile rich in healthy compounds (polyphenols, flavonoids, etc.) confirming their promising use in the supplements/nutraceutical/cosmetic field. MG63 cells treated with Big Lifeberry berries extracts showed a decrease of iNOS, COX-2, IL-6, and IL-8 expression indicating their significant biological activity.
Collapse
Affiliation(s)
- Mattia Spano
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.S.); (A.M.); (G.D.M.); (C.I.); (M.B.); (A.L.); (S.F.); (L.M.)
| | - Alessandro Maccelli
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.S.); (A.M.); (G.D.M.); (C.I.); (M.B.); (A.L.); (S.F.); (L.M.)
| | - Giacomo Di Matteo
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.S.); (A.M.); (G.D.M.); (C.I.); (M.B.); (A.L.); (S.F.); (L.M.)
| | - Cinzia Ingallina
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.S.); (A.M.); (G.D.M.); (C.I.); (M.B.); (A.L.); (S.F.); (L.M.)
| | - Mariangela Biava
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.S.); (A.M.); (G.D.M.); (C.I.); (M.B.); (A.L.); (S.F.); (L.M.)
| | - Maria Elisa Crestoni
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.S.); (A.M.); (G.D.M.); (C.I.); (M.B.); (A.L.); (S.F.); (L.M.)
| | - Jean-Xavier Bardaud
- Institut de Chimie Physique, CLIO, Université Paris Saclay, Bât 200, BP34, CEDEX, 91898 Orsay, France;
| | - Anna Maria Giusti
- Department of Experimental Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Roma, P.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (A.S.D.)
| | - Anna Scotto D’Abusco
- Department of Biochemical Sciences, Sapienza University of Roma, P.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (A.S.D.)
| | - Anatoly P. Sobolev
- Institute for Biological Systems, Magnetic Resonance Laboratory “Segre-Capitani”, CNR, Via Salaria Km 29.300, 00015 Monterotondo, Italy
| | - Alba Lasalvia
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.S.); (A.M.); (G.D.M.); (C.I.); (M.B.); (A.L.); (S.F.); (L.M.)
| | - Simonetta Fornarini
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.S.); (A.M.); (G.D.M.); (C.I.); (M.B.); (A.L.); (S.F.); (L.M.)
| | - Luisa Mannina
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.S.); (A.M.); (G.D.M.); (C.I.); (M.B.); (A.L.); (S.F.); (L.M.)
| |
Collapse
|
12
|
NMR Characterization of Ten Apple Cultivars from the Piedmont Region. Foods 2021; 10:foods10020289. [PMID: 33535442 PMCID: PMC7912530 DOI: 10.3390/foods10020289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022] Open
Abstract
The metabolite profile of ten traditional apple cultivars grown in the Piedmont region (Italy) was studied by means of nuclear magnetic resonance spectroscopy, identifying an overall number of 36 compounds. A more complete assignment of the proton nuclear magnetic resonance (1H NMR) resonances from hydroalcoholic and organic apple extracts with respect to literature data was reported, identifying fructose tautomeric forms, galacturonic acid, γ-aminobutyric acid (GABA), p-coumaroyl moiety, phosphatidylcholine, and digalactosyldiacylglycerol. The chemical profile of each apple cultivar was defined by thorough quantitative NMR analysis of four sugars (fructose, glucose, sucrose, and xylose), nine organic acids (acetic, citric, formic, citramalic, lactic, malic, quinic, and galacturonic acids), six amino acids (alanine, asparagine, aspartate, GABA, isoleucine, and valine), rhamnitol, p-coumaroyl derivative, phloretin/phloridzin and choline, as well as β-sitosterol, fatty acid chains, phosphatidylcholine, and digalactosyldiacylglycerol. Finally, the application of PCA analysis allowed us to highlight possible differences/similarities. The Magnana cultivar showed the highest content of sugars, GABA, valine, isoleucine, and alanine. The Runsé cultivar was characterized by high amounts of organic acids, whereas the Gamba Fina cultivar showed a high content of chlorogenic acid. A significant amount of quinic acid was detected in the Carla cultivar. The knowledge of apple chemical profiles can be useful for industries interested in specific compounds for obtaining ingredients of food supplements and functional foods and for promoting apple valorization and preservation.
Collapse
|