1
|
Yin F, Yang X, Lu S, Zhang H, Zhao Y, Wang S, Song C, Li Y, Chen Z, Liu H. Electrochemical nitrite sensing using mass transfer signal with a catalyst-free small-sized rotating disk electrode for wastewater monitoring. WATER RESEARCH 2025; 277:123346. [PMID: 39999602 DOI: 10.1016/j.watres.2025.123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Electrochemical nitrite sensing (ENS) is a competitive method for online monitoring in the intelligent control of biological nitrogen removal process. However, its popularity is extremely low due to complex wastewater interference and low sensor durability. Here, we developed a novel ENS method that utilizes the mass transfer signal (MTS) of the nitrite oxidation reaction (NOR), making detection accuracy dependent solely on mass transfer process. These features enabled us to design a catalyst-free, small-sized glassy carbon rotating disk electrode for accurate MTS determination with exceptional durability. The linearity of MTS versus nitrite concentration surpasses that of conventional differential pulse voltammetry and amperometry. The method has a wide linear range of 100 μM-100 mM, a detection limit of 28 μM, and a high sensitivity of 1638 μA mM-1 cm-2. Importantly, solution pH and coexisting buffers show no significant effect on MTS determinations as long as pH does not exceed 10. Excellent immunity to interference from ionic strength, temperature, COD, inert salts, metal ions, dissolved oxygen, and hydrogen peroxide was observed. While reducing substances capable of oxidation reactions do cause interference, they are not common in environmental samples. Finally, a self-designed detection system requiring a sample volume of 4 mL was used for wastewater testing. The results demonstrate good capability for nitrite detection during practical wastewater treatment processes, although relative error increases with the complexity and content of organic pollutants in the wastewater. Overall, this ENS method holds great potential for achieving rapid, stable, and low-cost nitrite sensing in environmental applications.
Collapse
Affiliation(s)
- Fengjun Yin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Chongqing School, Chongqing 400714, China
| | - Xiaohui Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hanlin Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Ying Zhao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Sha Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Chongqing School, Chongqing 400714, China
| | - Cheng Song
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yongzhi Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhaoming Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Chongqing School, Chongqing 400714, China.
| |
Collapse
|
2
|
Sarvestani PS, Majdinasab M, Golmakani MT, Shaghaghian S, Eskandari MH. Development of a simple and rapid dipstick paper-based test strip for colorimetric determination of nitrate and nitrite in water and foodstuffs. Food Chem 2024; 461:140856. [PMID: 39173253 DOI: 10.1016/j.foodchem.2024.140856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
A rapid user-friendly paper-based test strip using zinc microparticles in conjugation with Griess reagent was developed for nitrite and nitrate detection. Test strips were fabricated using a simple and fast method of step-by-step immersion into reagents so that each strip contained a single detection pad for nitrite detection and another separate pad for nitrate detection. To reduce nitrate to nitrite, zinc microparticles suspended in ethanolic solution of polyvinylpyrrolidone (PVP) were uniformly immobilized on the paper strips that were previously impregnated in the Griess reagent and dried. The Griess reagent components were optimized to reach the highest color intensity. The optimized test strip was able to determine both nitrite and nitrate with respective detection limits of 0.43 and 9.43 mg/kg and a detection time of 60 s. The performance of the new test strips was evaluated for the simultaneous colorimetric detection of nitrite and nitrate in water and different food samples.
Collapse
Affiliation(s)
- Parisa Shafeie Sarvestani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Marjan Majdinasab
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran.
| | - Mohammad-Taghi Golmakani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Samaneh Shaghaghian
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Mohammad-Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| |
Collapse
|
3
|
Li L, Lin D, Xu S, Yang L, Jiang C. Multi-deformable interpenetrating network thermosensitive hydrogel fluorescent device for real-time and visual detection of nitrite. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135471. [PMID: 39146591 DOI: 10.1016/j.jhazmat.2024.135471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/28/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Functionalized thermosensitive hydrogel materials exhibit excellent properties for the fabrication of sensing devices that enable real-time visual detection of food safety duo to their good plasticity and powerful loading capacity. Here, a ratiometric fluorescent device based on an interpenetrating network (IPN) thermosensitive hydrogel was designed to embed functionalized Au nanoclusters (Au NCs) and Blue Carbon dots (BCDs) composites in a multi-network structure to build a sensitive hazardous material nitrite (NO2-) chemsensor. The hydrogel was utilized poloxamer 407 (P407), lignin and cellulose to form stable IPN structure, which resulted in complementation and synergy, thereby strengthening its porous network structure. The combination of fluorescent nanoprobes with the porous network structure has the potential to enhance stable fluorescence signals and improve sensing sensitivity. Moreover, the thermosensitive liquid-solid transition characteristics of the hydrogel facilitate its preparation into diverse sensing devices following curing at room temperature. The hydrogel device, when combined with a smartphone system, converted image information into data information, thereby enabling the accurate quantification of NO2- with a detection limit of 9.38 nM in 2 s. The designed multi-functional hydrogel device is capable of real-time differentiation of NO2- dosage with the naked eye, offering a high-contrast, rapid-response sensing methodology for visual assessment of food freshness. This research contributes to the expansion of hydrogel materials applications and the detection of hazardous materials in food safety.
Collapse
Affiliation(s)
- Lingfei Li
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Dan Lin
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Shihao Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Liang Yang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China.
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China.
| |
Collapse
|
4
|
Han E, Li L, Gao T, Pan Y, Cai J. Nitrite determination in food using electrochemical sensor based on self-assembled MWCNTs/AuNPs/poly-melamine nanocomposite. Food Chem 2023; 437:137773. [PMID: 39491295 DOI: 10.1016/j.foodchem.2023.137773] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2024]
Abstract
A nanocomposite of multi-walled carbon nanotubes/gold nanoparticles/poly-melamine (MWCNTs/AuNPs/PM) was designed using layer-by-layer self-assembled method on glassy carbon electrode (GCE) by electrochemical deposition to construct an electrochemical sensor for sensitive detection of nitrite. First, a layer of MWCNTs was modified on electrode, and then gold nanoparticles and melamine were in-situ polymerized onto MWCNTs through self-assembled technique to form GCE/MWCNTs/AuNPs/PM. MWCNTs have large specific surface area, which increased the number of gold nanoparticles deposited on MWCNTs. Meanwhile, the doping of gold nanoparticles also improved the polymerization of melamine. The synergistic interaction of nanocomposite further improved the catalytic effect on nitrite. Under optimized conditions, the detection range for nitrite was from 0.4 to 1475 μM and the detection limit was 0.041 μM. Through the detection of nitrite in food samples, the recovery rates were from 93.16% to 108.68%. Therefore, the method can be used as a practical platform for nitrite detection in food.
Collapse
Affiliation(s)
- En Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Lei Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ting Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yingying Pan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
5
|
Samkumpim T, Alahmad W, Tabani H, Varanusupakul P, Kraiya C. Application of oxygen scavengers in gel electromembrane extraction: A green methodology for simultaneous determination of nitrate and nitrite in sausage samples. Food Chem 2023; 422:136190. [PMID: 37137238 DOI: 10.1016/j.foodchem.2023.136190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 05/05/2023]
Abstract
The generation of oxygen from electrolysis in gel electromembrane extraction (G-EME) causes a negative error when applied to the analysis of easily oxidized species such as nitrite. Nitrite in G-EME is oxidized by oxygen to nitrate, leading to the negative error and the impossibility of simultaneous analysis. In this work, the application of oxygen scavengers to the acceptor phase of the G-EME system was attempted to minimize the oxidation effect. Several oxygen scavengers were selected and examined according to their compatibility with ion chromatography. The mixture of sulfite and bisulfite (14 mg L-1) showed the highest efficiency in preventing the oxidation of nitrite to nitrate. Under the optimized conditions, a good linear range was obtained (10-200 μg L-1; R2 > 0.998) with a detection limit of 8 µg L-1 for both nitrite and nitrate. This method was applied to the simultaneous determination of nitrite and nitrate in sausage samples.
Collapse
Affiliation(s)
- Thidarat Samkumpim
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Waleed Alahmad
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Hadi Tabani
- Department of Environmental Geology, Research Institute of Applied Sciences (ACECR), Shahid Beheshti University, Tehran, Iran
| | - Pakorn Varanusupakul
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| | - Charoenkwan Kraiya
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Kodamatani H, Kubo S, Takeuchi A, Kanzaki R, Tomiyasu T. Sensitive Detection of Nitrite and Nitrate in Seawater by 222 nm UV-Irradiated Photochemical Conversion to Peroxynitrite and Ion Chromatography-Luminol Chemiluminescence System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5924-5933. [PMID: 36973229 DOI: 10.1021/acs.est.3c00273] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sensitive detection methods for nitrite (NO2-) and nitrate (NO3-) ions are essential to understand the nitrogen cycle and for environmental protection and public health. Herein, we report a detection method that combines ion-chromatographic separation of NO2- and NO3-, on-line photochemical conversion of these ions to peroxynitrite (ONOO-) by irradiation with a 222 nm excimer lamp, and chemiluminescence from the reaction between luminol and ONOO-. The detection limits for NO2- and NO3- were 0.01 and 0.03 μM, respectively, with linear ranges of 0.010-2.0 and 0.10-3.0 μM, respectively, at an injection volume of 1 μL. The results obtained by the proposed method for seawater analysis corresponded with those of a reference method (AutoAnalyzer based on the Griess reaction). As luminol chemiluminescence can measure ONOO- at picomolar concentrations, our method is expected to be able to detect NO2- and NO3- at picomolar concentrations owing to the high conversion ratio to ONOO- (>60%), assuming that contamination and background chemiluminescence issues can be resolved. This method has the potential to emerge as an innovative technology for NO2- and NO3- detection in various samples.
Collapse
Affiliation(s)
- Hitoshi Kodamatani
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Shotaro Kubo
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Akinori Takeuchi
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Ryo Kanzaki
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Takashi Tomiyasu
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
7
|
Zhang GQ, Shi YH, Wu W, Zhao Y, Xu ZH. A fluorescent carbon dots synthesized at room temperature for automatic determination of nitrite in Sichuan pickles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122025. [PMID: 36308829 DOI: 10.1016/j.saa.2022.122025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
In this paper, highly fluorescent carbon dots were synthesized from sodium ascorbate and polyethyleneimine at room temperature (R-CDs). The proposed green synthesis method was energy-saving, environmentally friendly and easy online. R-CDs exhibit an optimal emission peak of 490 nm under excitation at 380 nm with a quantum yield of 32 %. R-CDs morphology, composition, and properties were characterized using TEM, FTIR, XPS, UV-vis and fluorescence spectroscopy. The study revealed that nitrite quenched the fluorescence of R-CDs under acidic conditions. Subsequently, this discovered reaction of R-CDs and nitrite was combined with flow-injection technology, and a simple, precise and automatic fluorescence strategy for nitrite determination was accomplished. The response to nitrite was linear in 5-300 μg·L-1 concentration range and the limit of detection was 2.85 μg·L-1 (3.3 S/k). This method was applied to nitrite determination in Sichuan pickles during the pickling process and results were consistent with the standard method, demonstrating its feasibility in practical applications.
Collapse
Affiliation(s)
- Guo-Qi Zhang
- Department of Chemisty, School of Science, Xihua University, Chengdu 610039, PR China; School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Yu-Han Shi
- Department of Chemisty, School of Science, Xihua University, Chengdu 610039, PR China
| | - Wei Wu
- Department of Chemisty, School of Science, Xihua University, Chengdu 610039, PR China
| | - Yang Zhao
- The College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Shenzhen Changlong Technology Co Ltd., Longgang District, Shenzhen 518117, PR China
| | - Zhi-Hong Xu
- Department of Chemisty, School of Science, Xihua University, Chengdu 610039, PR China.
| |
Collapse
|
8
|
Development and Validation of a Reversed-Phase HPLC Method with UV Detection for the Determination of L-Dopa in Vicia faba L. Broad Beans. Molecules 2022; 27:molecules27217468. [DOI: 10.3390/molecules27217468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
L-Dopa (LD), a substance used medically in the treatment of Parkinson’s disease, is found in several natural products, such as Vicia faba L., also known as broad beans. Due to its low chemical stability, LD analysis in plant matrices requires an appropriate optimization of the chosen analytical method to obtain reliable results. This work proposes an HPLC-UV method, validated according to EURACHEM guidelines as regards linearity, limits of detection and quantification, precision, accuracy, and matrix effect. The LD extraction was studied by evaluating its aqueous stability over 3 months. The best chromatographic conditions were found by systematically testing several C18 stationary phases and acidic mobile phases. In addition, the assessment of the best storage treatment of Vicia faba L. broad beans able to preserve a high LD content was performed. The best LD determination conditions include sun-drying storage, extraction in HCl 0.1 M, chromatographic separation with a Discovery C18 column, 250 × 4.6 mm, 5 µm particle size, and 99% formic acid 0.2% v/v and 1% methanol as the mobile phase. The optimized method proposed here overcomes the problems linked to LD stability and separation, thus contributing to the improvement of its analytical determination.
Collapse
|
9
|
Dorovskikh SI, Klyamer DD, Fedorenko AD, Morozova NB, Basova TV. Electrochemical Sensor Based on Iron(II) Phthalocyanine and Gold Nanoparticles for Nitrite Detection in Meat Products. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155780. [PMID: 35957335 PMCID: PMC9371027 DOI: 10.3390/s22155780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 05/27/2023]
Abstract
Nitrites are widely used in the food industry, particularly for the preservation of meat products. Controlling the nitrate content in food is an important task to ensure people's health is not at risk; therefore, the search for, and research of, new materials that will modify the electrodes in the electrochemical sensors that detect and control the nitrate content in food products is an urgent task. In this paper, we describe the electrochemical behavior of a glass carbon electrode (GCE), modified with a Fe(II) tetra-tert-butyl phthalocyanine film (FePc(tBu)4/GCE), and decorated with gold nanoparticles (Au/FePc(tBu)4/GCE); this electrode was deposited using gas-phase methods. The composition and morphology of such electrodes were examined using spectroscopy and electron microscopy methods, whereas the main electrochemical characteristics were determined using cyclic voltammetry (CV) and amperometry (CA) methods in the linear ranges of CV 0.25-2.5 mM, CA 2-120 μM in 0.1 M phosphate buffer (pH = 6.8). The results showed that the modification of bare GCEs, with a Au/FePc(tBu)4 heterostructure, provided a high surface-to-volume ratio, thus ensuring its high sensitivity to nitrite ions of 0.46 μAμM-1. The sensor based on the Au/FePc(tBu)4/GCE has a low limit of nitrite detection at 0.35 μM, good repeatability, and stability. The interference study showed that the proposed Au/FePc(tBu)4/GCE exhibited a selective response in the presence of interfering anions, and the analytical capability of the sensor was demonstrated by determining nitrite ions in real samples of meat products.
Collapse
|
10
|
Development and validation of an ionic chromatography method for nitrite determination in processed foods and estimation of daily nitrite intake in Korea. Food Chem 2022; 382:132280. [DOI: 10.1016/j.foodchem.2022.132280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/25/2021] [Accepted: 01/26/2022] [Indexed: 11/20/2022]
|
11
|
Mohd Zuki SNS, Goh CT, Kassim MB, Tan LL. Bio-Doped Microbial Nanosilica as Optosensing Biomaterial for Visual Quantitation of Nitrite in Cured Meats. BIOSENSORS 2022; 12:388. [PMID: 35735536 PMCID: PMC9221271 DOI: 10.3390/bios12060388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
A microbial optosensor for nitrite was constructed based on biomimetic silica nanoparticles, which were doped with R5, a polypeptide component of silaffin, as a robust biosilica immobilization matrix entrapped with Raoultella planticola and NAD(P)H cofactor during the in vitro biosilicification process of silica nanoparticles. Ruthenium(II)(bipy)2(phenanthroline-benzoylthiourea), the chromophoric pH probe, was physically adsorbed on the resulting biogenic nanosilica. Optical quantitation of the nitrite concentration was performed via reflectance transduction of the bio-doped microbial nanosilica at a maximum reflectance of 608 nm, due to the deprotonation of phen-BT ligands in the ruthenium complex, while the intracellular enzyme expression system catalyzed the enzymatic reduction of nitrite. Reflectance enhancement of the microbial optosensor was linearly proportional to the nitrite concentration from 1−100 mg L−1, with a 0.25 mg L−1 limit of detection and a rapid response time of 4 min. The proposed microbial optosensor showed good stability of >2 weeks, great repeatability for 5 repetitive assays (relative standard deviation, (RSD) = 0.2−1.4%), high reproducibility (RSD = 2.5%), and a negligible response to common interferents found in processed meats, such as NO3−, NH4+, K+, Ca2+, and Mg2+ ions, was observed. The microbial biosensor demonstrated an excellent capacity to provide an accurate estimation of nitrite in several cured meat samples via validation using a standard UV-vis spectrophotometric Griess assay.
Collapse
Affiliation(s)
- Siti Nur Syazni Mohd Zuki
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia; (S.N.S.M.Z.); (C.T.G.)
| | - Choo Ta Goh
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia; (S.N.S.M.Z.); (C.T.G.)
| | - Mohammad B. Kassim
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia;
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia; (S.N.S.M.Z.); (C.T.G.)
| |
Collapse
|
12
|
Basaran B, Oral ZFY, Anlar P, Kaban G. Comparison and risk assessment of nitrate and nitrite levels in infant formula and biscuits for small children in Turkey. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Tao H, Zhang Z, Cao Q, Li L, Xu S, Jiang C, Li Y, Liu Y. Ratiometric fluorescent sensors for nitrite detection in the environment based on carbon dot/Rhodamine B systems. RSC Adv 2022; 12:12655-12662. [PMID: 35480346 PMCID: PMC9039988 DOI: 10.1039/d2ra00973k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
A novel carbon dot/Rhodamine B-based ratiometric fluorescent probe was developed for a highly sensitivity and selective detection of nitrite (NO2−). The probe showed colour changes from blue to orange under ultraviolet light in response to NO2− with a detection limit as low as 67 nM in the range of 0 to 40 μM. A ratiometric fluorescent test paper was successfully prepared using the probe solution, which demonstrated its feasibility towards a rapid and semi-quantitative detection of NO2− in real samples. A visual ratiometric fluorescent sensor based on blue carbon dot/Rhodamine B is used to selectively detect NO2− in the environment.![]()
Collapse
Affiliation(s)
- Huihui Tao
- School of Resources and Environmental Engineering, Anhui University Hefei 230601 Anhui Province P. R. China .,Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 P. R. China
| | - Zhao Zhang
- School of Resources and Environmental Engineering, Anhui University Hefei 230601 Anhui Province P. R. China .,Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 P. R. China
| | - Qiao Cao
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 P. R. China
| | - Lingfei Li
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 P. R. China
| | - Shihao Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 P. R. China
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 P. R. China
| | - Yucheng Li
- School of Resources and Environmental Engineering, Anhui University Hefei 230601 Anhui Province P. R. China
| | - Yingying Liu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 P. R. China
| |
Collapse
|
14
|
Han E, Zhang M, Pan Y, Cai J. Electrochemical Self-Assembled Gold Nanoparticle SERS Substrate Coupled with Diazotization for Sensitive Detection of Nitrite. MATERIALS 2022; 15:ma15082809. [PMID: 35454502 PMCID: PMC9028913 DOI: 10.3390/ma15082809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 01/16/2023]
Abstract
The accurate determination of nitrite in food samples is of great significance for ensuring people's health and safety. Herein, a rapid and low-cost detection method was developed for highly sensitive and selective detection of nitrite based on a surface-enhanced Raman scattering (SERS) sensor combined with electrochemical technology and diazo reaction. In this work, a gold nanoparticle (AuNP)/indium tin oxide (ITO) chip as a superior SERS substrate was obtained by electrochemical self-assembled AuNPs on ITO with the advantages of good uniformity, high reproducibility, and long-time stability. The azo compounds generated from the diazotization-coupling reaction between nitrite, 4-aminothiophenol (4-ATP), and N-(1-naphthyl) ethylenediamine dihydrochloride (NED) in acid condition were further assembled on the surface of AuNP/ITO. The detection of nitrite was realized using a portable Raman spectrometer based on the significant SERS enhancement of azo compounds assembled on the AuNP/ITO chip. Many experimental conditions were optimized such as the time of electrochemical self-assembly and the concentration of HAuCl4. Under the optimal conditions, the designed SERS sensor could detect nitride in a large linear range from 1.0 × 10-6 to 1.0 × 10-3 mol L-1 with a low limit of detection of 0.33 μmol L-1. Additionally, nitrite in real samples was further analyzed with a recovery of 95.1-109.7%. Therefore, the proposed SERS method has shown potential application in the detection of nitrite in complex food samples.
Collapse
Affiliation(s)
- En Han
- Correspondence: (E.H.); (J.C.)
| | | | | | | |
Collapse
|
15
|
Wang T, Xu X, Wang C, Li Z, Li D. A Novel Highly Sensitive Electrochemical Nitrite Sensor Based on a AuNPs/CS/Ti 3C 2 Nanocomposite. NANOMATERIALS 2022; 12:nano12030397. [PMID: 35159742 PMCID: PMC8840747 DOI: 10.3390/nano12030397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023]
Abstract
Nitrite is common inorganic poison, which widely exists in various water bodies and seriously endangers human health. Therefore, it is very necessary to develop a fast and online method for the detection of nitrite. In this paper, we prepared an electrochemical sensor for highly sensitive and selective detection of nitrite, based on AuNPs/CS/MXene nanocomposite. The characterization of the nanocomposite was demonstrated by scanning electron microscopy (SEM), a transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Under the optimized conditions, the fabricated electrode showed good performance with the linear range of 0.5–335.5 μM and 335.5–3355 μM, the limit of detection is 69 nM, and the sensitivity is 517.8 and 403.2 μA mM−1 cm−2. The fabricated sensors also show good anti-interference ability, repeatability, and stability, and have the potential for application in real samples.
Collapse
Affiliation(s)
- Tan Wang
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (X.X.); (C.W.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
| | - Xianbao Xu
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (X.X.); (C.W.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
| | - Cong Wang
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (X.X.); (C.W.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
| | - Zhen Li
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (X.X.); (C.W.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
| | - Daoliang Li
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (X.X.); (C.W.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
16
|
Shaker AS, Marrez DA, Ali MA, Fathy HM. Potential synergistic effect of Alhagi graecorum ethanolic extract with two conventional food preservatives against some foodborne pathogens. Arch Microbiol 2022; 204:686. [PMID: 36319767 PMCID: PMC9626429 DOI: 10.1007/s00203-022-03302-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
Abstract
The present study aims to screen the anti-bacterial activity and synergistic interaction of A. graecorum Boiss. ethanolic extract with two food preservatives against five strains of foodborne bacteria. Disk diffusion and minimum inhibitory concentration were used for anti-bacterial assay, checkerboard assay and time-kill curve were used for the combination studies. HPLC analysis and molecular docking study were performed to corroborate the in vitro results. The ethanolic extract showed anti-bacterial activity against all tested bacterial strains with inhibition zones from 7.5 to 9.3 mm and MIC values ranged between 1.2 and 1.8 mg mL−1. The combination of the ethanolic extract with Na-benzoate or Na-propionate resulted in synergistic and additive interactions against the tested bacteria with fractional inhibitory concentration index (FICI) ranges 0.31–0.63 and no antagonism was shown. Time-kill curve assay showed that the synergistic and additive combinations have inhibitory effects on the tested strains. The ethanolic extract combination with Na-benzoate or Na-propionate can be used for development new sources of food preservatives. Testing new different natural plant extracts with food preservatives will help develop new anti-bacterial agents.
Collapse
Affiliation(s)
- Abdulrhman S. Shaker
- grid.7776.10000 0004 0639 9286Microbiology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Diaa A. Marrez
- grid.419725.c0000 0001 2151 8157Food Toxicology and Contaminants Department, National Research Centre, Dokki, Giza Egypt
| | - Mohamed A. Ali
- grid.7776.10000 0004 0639 9286Microbiology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hayam M. Fathy
- grid.7776.10000 0004 0639 9286Microbiology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
17
|
Elfiky M, Salahuddin N. Advanced sensing platform for nanomolar detection of food preservative nitrite in sugar byproducts based on 3D mesoporous nanorods of montmorillonite/TiO2–ZnO hybrids. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Morsy MK, Morsy OM, Abd-Elaaty EM, Elsabagh R. Development and Validation of Rapid Colorimetric Detection of Nitrite Concentration in Meat Products on a Polydimethylsiloxane (PDMS) Microfluidic Device. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Pascale R, Acquavia MA, Onzo A, Cataldi TRI, Calvano CD, Bianco G. Analysis of surfactants by mass spectrometry: Coming to grips with their diversity. MASS SPECTROMETRY REVIEWS 2021. [PMID: 34570373 DOI: 10.1002/mas.21735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Surfactants are surface-active agents widely used in numerous applications in our daily lives as personal care products, domestic, and industrial detergents. To determine complex mixtures of surfactants and their degradation products, unselective and rather insensitive methods, based on colorimetric and complexometric analyses are no longer employable. Analytical methodologies able to determine low concentration levels of surfactants and closely related compounds in complex matrices are required. The recent introduction of robust, sensitive, and selective mass spectrometry (MS) techniques has led to the rapid expansion of the surfactant research field including complex mixtures of isomers, oligomers, and homologues of surfactants as well as their chemically and biodegradation products at trace levels. In this review, emphasis is given to the state-of-the-art MS-based analysis of surfactants and their degradation products with an overview of the current research landscape from traditional methods involving hyphenate techniques (gas chromatography-MS and liquid chromatography-MS) to the most innovative approaches, based on high-resolution MS. Finally, we outline a detailed explanation on the utilization of MS for mechanistic purposes, such as the study of micelle formation in different solvents.
Collapse
Affiliation(s)
| | - Maria A Acquavia
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
- ALMAGISI S.r.l Corso Italia, Bolzano, Italy
| | - Alberto Onzo
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - Tommaso R I Cataldi
- Università degli Studi di Bari Aldo Moro, Bari, Italy
- Dipartimento di Chimica, Bari, Italy
| | | | - Giuliana Bianco
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| |
Collapse
|
20
|
Yilmaz MD. A novel ratiometric and colorimetric probe for rapid and ultrasensitive detection of nitrite in water based on an Acenaphtho[1,2-d] imidazole derivative. Anal Chim Acta 2021; 1166:338597. [PMID: 34022992 DOI: 10.1016/j.aca.2021.338597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
The concentration of nitrite (NO2-) ions above allowable limits in water resources and food stuffs is considered hazardous and has been proven to be of great threat to the environment and public health. In this work, an acenaphtho [1,2-d] imidazole derivative (1) as a ratiometric colorimetric probe is developed. UV-Vis experiments demonstrate that the probe 1 shows excellent selectivity toward NO2- in the presence of other potential interfering species, a rapid response (20 s) and a low detection limit (100 nM) by a distinct visual color change with a bathochromic shift of 120 nm from colorless to intense yellow. Besides, this probe is further used for the quantification of nitrite ions in environmental water resources such as tap water, underground water, and surface water samples. The high recoveries (96-99% with relative standard deviations (RSD) of <2.0%) make the probe 1 a promising candidate for practical applications in daily life in the detection of nitrite ions.
Collapse
Affiliation(s)
- M Deniz Yilmaz
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, 42080, Konya, Turkey; Research and Development Center for Diagnostic Kits (KIT-ARGEM), Konya Food and Agriculture University, 42080, Konya, Turkey.
| |
Collapse
|
21
|
Plasmonic nanoparticles for colorimetric detection of nitrite and nitrate. Food Chem Toxicol 2021; 149:112025. [PMID: 33556467 DOI: 10.1016/j.fct.2021.112025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/09/2021] [Accepted: 01/21/2021] [Indexed: 01/09/2023]
Abstract
Irregular and unknowingly use of chemical compounds is a serious threat to the environment, human health, and other living organisms attributable and intensified by the growing population and increasing demand for food. Nitrite and nitrate are among those compounds that are widely used in agricultural and industrial products. Therefore on-site, rapid, simple, and accurate monitoring of nitrite/nitrate is highly desirable. In this review, while emphasizing the importance of nitrite and nitrate in food chain safety and health of living organisms, their measurement methods, in particular, nanoplasmonic colorimetric sensors are comprehensively discussed based on the researches in this field. Nanoplasmonic-based sensors have proved to be successful in comparison with traditional methods due to their low cost, biocompatibility, high sensitivity and selectivity, and most importantly, the ability to visually detect and be used on-site to measure nitrite and nitrate. The design principle of nanoplasmonic sensors will be presented into two categories of aggregation- and etching-based detection followed by their applications in nitrite detection. The nitrate measurement will be discussed based on either direct detection of nitrate or indirect strategy in which nitrate is reduced to nitrite by enzymes or metals. Finally, the remaining challenges and prospects in this topic will be described and outlined.
Collapse
|