1
|
Kapellakis IE, Tsagarakis KP. Historical evolution of olive oil production processes focusing on the role of water, the contribution of energy sources, and the by-product management: The case-study of Crete, Greece. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175861. [PMID: 39216767 DOI: 10.1016/j.scitotenv.2024.175861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
There are numerous studies dealing with olive oil management from ancient civilizations to the mid last century, but they are limited on the historical value of information. At the same time, much knowledge is widely available and accessible on the contemporaneous production of olive oil, the necessary inputs (water and energy) and outputs (by-products) of the production process. The present study aims to shed light on olive oil extraction management from antiquity to present and to bridge the gap between archaeological and modern agricultural, engineering, and environmental disciplines. For the purposes of this study, Crete, Greece, a well-known and traditional olive oil producing region is investigated. This study is dedicated to unveil practices concerning: (a) the processing of the olives, (b) the various energy aspects per era, (c) the role of water and energy at each stage of the extraction process, and (d) management of by-products per era. The main findings support that: (a) the evolution of the extraction processes was relatively slow and remained almost the same from Minoan times until the middle of the 20th century, (b) the importance of water has been demonstrated from the beginning in the efficient extraction of the maximum amount of olive oil, (c) wastewater was first reported during the Hellenistic-Roman period due to the increased quantities produced, (d) by-product management was only considered in the previous century for environmental purposes, (e) olive oil production has been a human-based process for centuries and was greatly increased by the introduction of animals, and (f) olive oil production was further increased with the utilization of mechanical and electrical energy. It can be therefore clearly concluded that past practices have both similarities and differences with the present ones, which in turn have been optimized in terms of energy sources, water uses, olive mill equipment, and environmental considerations, to result in maximum olive oil production with minimum environmental impacts. Based on this work, important lessons can be drawn that show the historical evolution of extraction and management practices.
Collapse
Affiliation(s)
- Iosif E Kapellakis
- Department of Civil Engineering, School of Architecture, Engineering, Land and Environmental Sciences, Neapolis University Pafos, 2 Danais Av., 8042 Pafos, Cyprus.
| | - Konstantinos P Tsagarakis
- School of Production Engineering and Management, Technical University of Crete, University Campus, 731 00 Kounoupidiana, Chania, Greece
| |
Collapse
|
2
|
Sicari V, Mincione A, Custureri IMG, Pino R, Loizzo MR. Enrichment of Breadsticks with Flavoured Oils: Chemical Composition, Antioxidant Activity and Technological and Sensory Properties. Antioxidants (Basel) 2024; 13:1438. [PMID: 39765768 PMCID: PMC11672860 DOI: 10.3390/antiox13121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/05/2025] Open
Abstract
The present work compares the physical-chemical, organoleptic and antioxidant characteristics of breadsticks (Bs) prepared in the traditional way (BCs) with extra virgin olive oil (EVOO), and with mace (BMs), ginger (BGs) and turmeric (BTs) flavoured olive oil (FOO). Breadsticks' water activity (aw), pH, moisture content (U.R.), total phenol (TPC) and total flavonoid (TFC) content, colorimetric analysis and texture and sensory analysis were used to evaluate the impact of the new recipes on consumer acceptance. The radical scavenging activity was also assessed by using 1,1-diphenyl-2-picryl hydrazine (DPPH) and 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS). The use of FOO influenced breadsticks' colour with reference to the BG and BT enriched breadsticks, and some variability in free acidity values emerged from the comparison between EVOO and FOO. As expected, peroxide values increased in all enriched breadsticks. Moreover, all flavoured breadsticks were more resistant to lipid oxidation than BCs with an IP value of 92.44, 91.26 and 60.07 h, respectively, for BMs, BGs and BTs. The cooking process of the breadsticks at 180 °C for 25 min did not significantly impact the content of bioactive compounds. BMs showed the highest TPC and TFC with values of 996.32 and 534.41 mg/kg, respectively. Moreover, BMs showed the highest DPPH radical scavenging potential with a value of 393.91 µM TEAC/100 g extract, whereas BGs showed the highest ABTS radical scavenging activity (160.13 µM TEAC/100 g extract). Sensory quantitative descriptive analysis showed the most interesting parameters to be the intensity of toasting for BGs and the intensity of spiciness in BMs. Furthermore, BGs and BTs were found to have a slightly more pungent odour. From the texture assessment, the BC was the crumbliest breadstick, while greater crunchiness was found in the BG and BM samples.
Collapse
Affiliation(s)
- Vincenzo Sicari
- Department AGRARIA, “Mediterranea” University of Reggio Calabria, Località Feo di Vito, 89124 Reggio Calabria, RC, Italy; (V.S.); (I.M.G.C.)
| | - Antonio Mincione
- Department AGRARIA, “Mediterranea” University of Reggio Calabria, Località Feo di Vito, 89124 Reggio Calabria, RC, Italy; (V.S.); (I.M.G.C.)
| | - Irene Maria Grazia Custureri
- Department AGRARIA, “Mediterranea” University of Reggio Calabria, Località Feo di Vito, 89124 Reggio Calabria, RC, Italy; (V.S.); (I.M.G.C.)
| | - Roberta Pino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (R.P.); (M.R.L.)
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (R.P.); (M.R.L.)
| |
Collapse
|
3
|
Boateng ID, Clark K. Trends in extracting Agro-byproducts' phenolics using non-thermal technologies and their combinative effect: Mechanisms, potentials, drawbacks, and safety evaluation. Food Chem 2024; 437:137841. [PMID: 37918151 DOI: 10.1016/j.foodchem.2023.137841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
The agro-food industries generate significant waste with adverse effects. However, these byproducts are rich in polyphenols with diverse bioactivities. Innovative non-thermal extraction (NTE) technologies (Naviglio extractor®, cold plasma (CP), high hydrostatic pressure (HHP), pulse-electric field (PEF), ultrasound-assisted extraction (UAE), etc.) and their combinative effect (integrated UAE + HPPE, integrated PEF + enzyme-assisted extraction, etc.) could improve polyphenolic extraction. Hence, this article comprehensively reviewed the mechanisms, applications, drawbacks, and safety assessment of emerging NTE technologies and their combinative effects in the last 5 years, emphasizing their efficacy in improving agro-byproduct polyphenols' extraction. According to the review, incorporating cutting-edge NTE might promote the extraction ofmore phenolic extractfrom agro-byproducts due to numerous benefits,such as increased extractability,preserved thermo-sensitive phenolics, and low energy consumption. The next five years should investigate combined novel NTE technologies as they increase extractability. Besides, more research must be done on extracting free and bound phenolics, phenolic acids, flavonoids, and lignans from agro by-products. Finally, the safety of the extraction technology on the polyphenolic extract needs a lot of studies (in vivo and in vitro), and their mechanisms need to be explored.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America; Certified Group, 199 W Rhapsody Dr, San Antonio, TX 78216, United States of America; Kumasi Cheshire Home, Off Edwenase Road, Kumasi, Ghana.
| | - Kerry Clark
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
4
|
Duque-Soto C, Leyva-Jiménez FJ, Quirantes-Piné R, López-Bascón MA, Lozano-Sánchez J, Borrás-Linares I. Evaluation of Olive Leaf Phenolic Compounds' Gastrointestinal Stability Based on Co-Administration and Microencapsulation with Non-Digestible Carbohydrates. Nutrients 2023; 16:93. [PMID: 38201923 PMCID: PMC10780473 DOI: 10.3390/nu16010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The large generation of olive by-products has motivated their revalorization into high-added-value products. In this regard, olive leaves pose as an interesting source of bioactive compounds, due to their phenolic content with commonly known antioxidant, anti-inflammatory, and immunomodulatory properties, with potential application in non-communicable diseases. However, their effectiveness and applicability into functional foods is limited by their instability under gastrointestinal conditions. Thus, the development of protective formulations is essential. In this study, the spray-drying encapsulation of a phenolic-rich olive leaf extract with inulin as the encapsulating agent was optimized. Then, the behavior of the free extract under gastrointestinal conditions, its co-administration with the encapsulating agent, and the optimized microencapsulated formulation were studied through an in vitro gastrointestinal digestion process following the INFOGEST protocol. Digestion of the free extract resulted in the degradation of most compounds, whereas this was minimized in the co-administration of the non-encapsulated extract with the encapsulating agent. This protective effect, related to its interaction with inulin, was similar to the microencapsulated formulation. Thus, both approaches, co-administration and microencapsulation with inulin, could be promising strategies for the improvement of the stability of these anti-inflammatory and immunomodulatory compounds under gastrointestinal conditions, enhancing their beneficial effect.
Collapse
Affiliation(s)
- Carmen Duque-Soto
- Department of Food Science and Nutrition, Faculty of Farmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain;
| | - Francisco Javier Leyva-Jiménez
- Area of Food Science and Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain;
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Rosa Quirantes-Piné
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain;
| | - María Asunción López-Bascón
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, Edificio BioRegión, 18016 Granada, Spain;
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Faculty of Farmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain;
| | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain;
| |
Collapse
|
5
|
Boateng ID. Recent advances incombined Avant-garde technologies (thermal-thermal, non-thermal-non-thermal, and thermal-non-thermal matrix) to extract polyphenols from agro byproducts. J Food Drug Anal 2023; 31:552-582. [PMID: 38526817 PMCID: PMC10962677 DOI: 10.38212/2224-6614.3479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/02/2023] [Indexed: 03/27/2024] Open
Abstract
Because food byproducts (waste) are rich in phytoconstituents, valorizing them is crucial for global food security. However, conventional extraction (CE), including decoction, maceration, Soxhlet, etc., for agro byproducts' polyphenol extraction are time-consuming and rely significantly on vast volumes of potentially aggressive solvents. Hence, Avantgarde extraction technologies, including non-thermal (high hydrostatic pressure (HHPE), pulsed-electric field (PEF), high voltage electrical discharges (HVED), etc.) and thermal extraction (supercritical fluid (SCF), subcritical water extraction (SWE), microwave-assisted extraction (MAE), etc.), as well as their thermal combinations (SCF-PLE, SCCO2-SWE, SCCO2-MAE, etc.), non-thermal combinations (HHPE + UAE, PEF + UAE, HVED + UAE, etc.) and combined thermalnon-thermal (MAE-UAE, etc.) are increasingly replacing CE. However, a review of combined Avant-garde extraction escalation technologies (non-thermal/thermal extraction matrix) for extracting polyphenols from agro-byproducts is limited. Hence, this manuscript reviewed Avant-garde extraction technologies (non-thermal/thermal extraction matrix) for extracting phenolics from agro-byproducts in the last 5 years. The key factors affecting polyphenols' extraction from the byproduct, the recent applications of Avant-garde technologies, and their principle were reviewed using databases from Web of Science and Lens.org. The results demonstrated that combined Avant-garde extraction escalation technologies increase extractability, resulting in polyphenols with higher extraction rates, fewer contaminants, and preservation of thermosensitive components. Therefore, combined Avant-garde extraction technologies should be explored over the next five years. Implementing an integrated process and the strategic sequencing of diverse Avant-garde extraction technologies are important. Thus, further investigation is required to explore the sequencing process and its potential impact on the extraction of phenolics from agro-byproducts.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO, 65211,
USA
- Certified Group, 199 W Rhapsody Dr, San Antonio, TX, 78216,
USA
- Kumasi Cheshire Home, Off Edwenase Road, Kumasi,
Ghana
- Organization of African Academic Doctors, PO Box 25305-00100, Nairobi,
Kenya
| |
Collapse
|
6
|
Conti V, Piccini C, Romi M, Salusti P, Cai G, Cantini C. Pasta Enriched with Carrot and Olive Leaf Flour Retains High Levels of Accessible Bioactives after In Vitro Digestion. Foods 2023; 12:3540. [PMID: 37835193 PMCID: PMC10572326 DOI: 10.3390/foods12193540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The aim of this research was to evaluate the levels of antioxidants and polyphenols in pasta enriched with either carrot or olive leaf flours after simulating gastrointestinal digestion. Pasta samples were prepared with fixed amounts of carrot and olive leaf flours (15% and 6% of the total mixture, respectively). We measured the antioxidant capacity and polyphenol content at different stages of the pasta production process, starting from the initial flour to the cooked pasta, and tested samples of the liquid component and solid waste resulting from the digestion process. The antioxidant activity was measured by the FRAP method, while the polyphenol content was measured by the Folin-Ciocalteu method. Vitamin E contents were measured by HPLC. The pasta enriched with carrot (1.26 ± 0.05 mmol/100 g) and olive leaf (2.9 ± 0.07 mmol/100 g) exhibited higher antioxidant power compared to the unenriched pasta (0.8 ± 0.1 mmol/100 g). The polyphenol content followed a similar trend, with values of 131.23 ± 3.08 for olive flour-enriched pasta, 79.15 ± 1.11 for carrot flour-enriched pasta, and 67.5 ± 1.39 for the wheat-only pasta. The pasta samples maintained their antioxidant and polyphenol levels even after undergoing the simulated digestion process. Significantly, the liquid component of the pasta with olive leaf flours had the highest levels of antioxidants and polyphenols during all stages of the digestion process. According to the results of this study, pasta enriched with carrot and olive leaf flours shows promising potential for improving nutritional and functional properties by increasing antioxidant and polyphenol content. The samples were also evaluated by a sensory panel, which showed that fortification modified the perception of some organoleptic attributes without affecting the overall taste of the pasta.
Collapse
Affiliation(s)
- Veronica Conti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Chiara Piccini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (C.P.); (M.R.); (G.C.)
| | - Marco Romi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (C.P.); (M.R.); (G.C.)
| | - Patrizia Salusti
- National Research Council of Italy, Institute for Bioeconomy (CNR-IBE), 58022 Follonica, Italy; (P.S.); (C.C.)
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (C.P.); (M.R.); (G.C.)
| | - Claudio Cantini
- National Research Council of Italy, Institute for Bioeconomy (CNR-IBE), 58022 Follonica, Italy; (P.S.); (C.C.)
| |
Collapse
|
7
|
Gómez-Mejía E, Sacristán I, Rosales-Conrado N, León-González ME, Madrid Y. Valorization of Citrus reticulata Blanco Peels to Produce Enriched Wheat Bread: Phenolic Bioaccessibility and Antioxidant Potential. Antioxidants (Basel) 2023; 12:1742. [PMID: 37760045 PMCID: PMC10525822 DOI: 10.3390/antiox12091742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The fortification of foods with bioactive polyphenols aims to improve their functional properties and to provide health benefits. Yet, to exert their benefits, phenolic compounds must be released from the food matrix and absorbed by the small intestine after digestion, so assessing their bioaccessibility is crucial to determine their potential role. This work aims to incorporate Citrus reticulata Blanco peel extracts into wheat bread as a promising opportunity to increase their bioactive potential, along with supporting the sustainable management of citrus-industry waste. A control and a wheat bread enriched at 2% and 4% (w/v) with a phenolic extract from mandarin peels were prepared and analyzed for antioxidant activity and phenolic composition using LC-MS and UV-Vis spectrophotometry. In addition, in vitro digestion was performed, and the digested extracts were analyzed with HPLC-MS/MS. The results showed a significant increase in total flavonoid content (TFC, 2.2 ± 0.1 mg·g-1), antioxidant activity (IC50 = 37 ± 4 mg·g-1), and contents of quercetin, caffeic acid, and hesperidin in the 4% (w/v) enriched bread. Yet, most polyphenols were completely degraded after the in vitro digestion process, barring hesperidin (159 ± 36 μg·g-1), highlighting the contribution of citrus enrichment in the development of an enriched bread with antioxidant potential.
Collapse
Affiliation(s)
- Esther Gómez-Mejía
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain; (I.S.); (M.E.L.-G.); (Y.M.)
| | | | - Noelia Rosales-Conrado
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain; (I.S.); (M.E.L.-G.); (Y.M.)
| | | | | |
Collapse
|
8
|
Plaskova A, Mlcek J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front Nutr 2023; 10:1118761. [PMID: 37057062 PMCID: PMC10086256 DOI: 10.3389/fnut.2023.1118761] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Plants are recognized as natural sources of antioxidants (e.g., polyphenols, flavonoids, vitamins, and other active compounds) that can be extracted by green solvents like water, ethanol, or their binary mixtures. Plant extracts are becoming more used as food additives in various food systems due to their antioxidant abilities. Their application in food increases the shelf life of products by preventing undesirable changes in nutritional and sensory properties, such as the formation off-flavors in lipid-rich food. This review summarizes the most recent literature about water or ethanol-water plant extracts used as flavors, colorings, and preservatives to fortify food and beverages. This study is performed with particular attention to describing the benefits of plant extract-fortified products such as meat, vegetable oils, biscuits, pastries, some beverages, yogurt, cheese, and other dairy products. Antioxidant-rich plant extracts can positively affect food safety by partially or fully replacing synthetic antioxidants, which have lately been linked to safety and health issues such as toxicological and carcinogenic consequences. On the other hand, the limitations and challenges of using the extract in food should be considered, like stability, level of purity, compatibility with matrix, price, sensory aspects like distinct taste, and others. In the future, continuous development and a tendency to use these natural extracts as food ingredients are expected, as indicated by the number of published works in this area, particularly in the past decade.
Collapse
Affiliation(s)
| | - Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czechia
| |
Collapse
|
9
|
Fu X, Tan Y, Shi M, Zeng C, Qin S. Multi-Index Comprehensive Assessment Optimized Critical Flavonoids Extraction from Semen Hoveniae and Their In Vitro Digestive Behavior Evaluation. Foods 2023; 12:foods12040773. [PMID: 36832847 PMCID: PMC9955648 DOI: 10.3390/foods12040773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Critical flavonoids from Semen Hoveniae have huge potential bioactivities on hypoglycemic. A multi-index comprehensive assessment based on Analytic Hierarchy Process (AHP) method was performed to optimize the extraction process of flavonoids from Semen Hoveniae, which taking dihydromyricetin, taxifolin, myricetin and quercetin as indexes, and, then, an in vitro simulated gastrointestinal digestion model was established to investigate the changes of flavonoids contents and their antioxidant capacity before and after digestion. The results showed that three influence factors acted significantly with the order of ethanol concentration > solid-liquid ratio > ultrasound time. The optimized extraction parameters were as follows: 1:37 w/v of solid-liquid ratio, 68% of ethanol concentration and 45 min for ultrasonic time. During in vitro digestion, the order of remaining ratio of four flavonoids in the extract was dihydromyricetin > taxifolin > myricetin > quercetin in gastric digestion, and remaining ratio of taxifolin was 34.87% while others were restructured in intestinal digestion. Furthermore, the 1,1-dipheny-2-picryhydrazyl free radical (DPPH ·) scavenging ability and oxygen radical absorption capacity (ORAC) of extract were more stable in gastric digestion. After an hour's intestinal digestion, the extract had no DPPH antioxidant capacity, but amazingly, its ORAC antioxidant capacity was retained or increased, which implied that substances were transformed and more hydrogen donors were produced. This study has carried out a preliminary discussion from the perspective of extraction and put forward a new research idea, to improve the in vivo bioavailability of the critical flavonoids from Semen Hoveniae.
Collapse
|
10
|
Effect of Three Bakery Products Formulated with High-Amylose Wheat Flour on Post-Prandial Glycaemia in Healthy Volunteers. Foods 2023; 12:foods12020319. [PMID: 36673410 PMCID: PMC9857412 DOI: 10.3390/foods12020319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
Both Glycaemic index (GI) and Glycaemic Load (GL) were introduced to measure the impact of a carbohydrate-containing food on blood glucose. From this perspective, high-amylose (HA) flours, with a higher percentage of resistant starch (RS), may represent a suitable raw material to improve the glycaemic response. The present work aims to investigate the GI of HA bakery products (biscuits, taralli and bread) compared to products obtained from conventional flour. Ten healthy volunteers were enrolled and their capillary blood glucose was measured every 15 min for 2 h after the consumption of HA and control products containing 50 g of available carbohydrates. On average, in the three bakery products, the amount of total starch replaced by RS was equal to 12%. HA biscuits and HA bread showed significantly lower GI than their control counterparts (p = 0.0116 and p = 0.011, respectively) and better glycaemic control. From the survey to assess liking and willingness to pay on HA snacks, HA packages received an average premium of €0.66 compared to control products. Although HA flour results in lower GI in both biscuits and bread, further studies are needed to evaluate the correct composition of HA products to have beneficial effects on post-prandial glycaemia.
Collapse
|
11
|
Parenti O, Albanese L, Guerrini L, Zanoni B, Zabini F, Meneguzzo F. Whole wheat bread enriched with silver fir (Abies alba Mill.) needles extract: technological and antioxidant properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3581-3589. [PMID: 34862604 DOI: 10.1002/jsfa.11704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The interest of consumers and market and scientific research for added-value foods obtained with environmentally sustainable productive chains is increasing. Silver fir (Abies alba Mill.) needles (SFNs), often by-products of forest management and logging, represent an unexploited source of bioactive compounds. RESULTS For the first time, SFN aqueous extract obtained through controlled hydrodynamic cavitation was used to enrich whole wheat flour bread. The first trial found that 35% SFNs extract addition was the absolute threshold of taste perception. The second trial investigated dough rheological properties and bread technological and antioxidant properties in samples enriched with 35% and 100% SFNs extract compared with the control (0% SFNs extract). SFNs extract significantly increased bread antioxidant capacity in both 35% and 100% SFN fresh breads by ~42.5% and ~87% respectively and in 100% SFNs bread samples after 72 h of storage by ~76%. Enrichment of 35% showed higher alveograph dough extensibility (~11%) and different bread texture in terms of hardness, springiness, and chewiness. Enrichment with 100% SFNs extract significantly improved dough and bread technological quality: it increased alveograph dough extensibility L (~18%), swelling index G (~8%), and flour strength W (~14%) and showed the highest increase in bread specific volume (~0.200 L kg-1 ). CONCLUSIONS SFNs aqueous extract produced with controlled hydrodynamic cavitation appeared a valuable technical material for the manufacturing of added-value and functional breads. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ottavia Parenti
- Institute for Bioeconomy, National Research Council, Florence, Italy
| | - Lorenzo Albanese
- Institute for Bioeconomy, National Research Council, Florence, Italy
| | - Lorenzo Guerrini
- Department of Land, Environment, Agriculture and Forestry (TeSAF), University of Padova, Legnaro, Italy
| | - Bruno Zanoni
- Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Florence, Italy
| | - Federica Zabini
- Institute for Bioeconomy, National Research Council, Florence, Italy
| | | |
Collapse
|
12
|
Villalva M, Silvan JM, Guerrero-Hurtado E, Gutierrez-Docio A, Navarro del Hierro J, Alarcón-Cavero T, Prodanov M, Martin D, Martinez-Rodriguez AJ. Influence of In Vitro Gastric Digestion of Olive Leaf Extracts on Their Bioactive Properties against H. pylori. Foods 2022; 11:1832. [PMID: 35804647 PMCID: PMC9265983 DOI: 10.3390/foods11131832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aim of this work was to evaluate the influence of in vitro gastric digestion of two olive leaf extracts (E1 and E2) on their chemical composition and bioactive properties against Helicobacter pylori (H. pylori), one of the most successful and prevalent human pathogens. HPLC-PAD/MS analysis and anti-inflammatory, antioxidant, and antibacterial activities of both olive leaf extracts were carried out before and after their in vitro gastric digestion. The results showed that gastric digestion produced modifications of the chemical composition and bioactive properties of both olive leaf extracts. The main compounds in the extract E1 were hydroxytyrosol and its glucoside derivatives (14,556 mg/100 g), presenting all the identified compounds a more polar character than those found in the E2 extract. E2 showed a higher concentration of less polar compounds than E1 extract, with oleuropein (21,419 mg/100 g) being the major component. Gastric digestion during the fasted state (pH 2) induced an overall decrease of the most identified compounds. In the extract E1, while the anti-inflammatory capacity showed only a slight decrease (9% of IL-8 production), the antioxidant properties suffered a drastic drop (23% of ROS inhibition), as well as the antibacterial capacity. However, in the extract E2, these changes caused an increase in the anti-inflammatory (19% of IL-8 production) and antioxidant activity (9% of ROS inhibition), which could be due to the hydrolysis of oleuropein and ligustroside into their main degradation products, hydroxytyrosol and tyrosol, but the antibacterial activity was reduced. Gastric digestion during fed state (pH 5) had less influence on the composition of the extracts, affecting in a lesser degree their anti-inflammatory and antioxidant activity, although there was a decrease in the antibacterial activity in both extracts similar to that observed at pH 2.
Collapse
Affiliation(s)
- Marisol Villalva
- Microbiology and Food Biocatalysis Group (MICROBIO), Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9. Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain; (M.V.); (J.M.S.)
| | - Jose Manuel Silvan
- Microbiology and Food Biocatalysis Group (MICROBIO), Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9. Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain; (M.V.); (J.M.S.)
| | - Esperanza Guerrero-Hurtado
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera, 9. Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain; (E.G.-H.); (A.G.-D.); (J.N.d.H.); (M.P.); (D.M.)
| | - Alba Gutierrez-Docio
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera, 9. Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain; (E.G.-H.); (A.G.-D.); (J.N.d.H.); (M.P.); (D.M.)
| | - Joaquín Navarro del Hierro
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera, 9. Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain; (E.G.-H.); (A.G.-D.); (J.N.d.H.); (M.P.); (D.M.)
| | - Teresa Alarcón-Cavero
- Microbiology Department, Hospital Universitario de La Princesa, Sanitaria Princesa Research Institute, 28006 Madrid, Spain;
- Department of Preventive Medicine, Public Health and Microbiology, School of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - Marin Prodanov
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera, 9. Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain; (E.G.-H.); (A.G.-D.); (J.N.d.H.); (M.P.); (D.M.)
| | - Diana Martin
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera, 9. Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain; (E.G.-H.); (A.G.-D.); (J.N.d.H.); (M.P.); (D.M.)
| | - Adolfo J. Martinez-Rodriguez
- Microbiology and Food Biocatalysis Group (MICROBIO), Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9. Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain; (M.V.); (J.M.S.)
| |
Collapse
|
13
|
Calvano CD, Tamborrino A. Valorization of Olive By-Products: Innovative Strategies for Their Production, Treatment and Characterization. Foods 2022; 11:foods11060768. [PMID: 35327197 PMCID: PMC8947182 DOI: 10.3390/foods11060768] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 01/21/2023] Open
Affiliation(s)
- Cosima D. Calvano
- Inter-Department Center SMART, Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- Correspondence: (C.D.C.); (A.T.)
| | - Antonia Tamborrino
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
- Correspondence: (C.D.C.); (A.T.)
| |
Collapse
|
14
|
Renoldi N, Lucci P, Peressini D. Impact of oleuropein on rheology and breadmaking performance of wheat doughs, and functional features of bread. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Niccolò Renoldi
- Department of Agricultural, Food, Environmental and Animal Sciences University of Udine Via Sondrio 2/A Udine 33100 Italy
| | - Paolo Lucci
- Department of Agricultural, Food, Environmental and Animal Sciences University of Udine Via Sondrio 2/A Udine 33100 Italy
| | - Donatella Peressini
- Department of Agricultural, Food, Environmental and Animal Sciences University of Udine Via Sondrio 2/A Udine 33100 Italy
| |
Collapse
|
15
|
Gil-Martín E, Forbes-Hernández T, Romero A, Cianciosi D, Giampieri F, Battino M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem 2021; 378:131918. [PMID: 35085901 DOI: 10.1016/j.foodchem.2021.131918] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/06/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Agro-foodindustries generate colossal amounts of non-edible waste and by-products, easily accessible as raw materials for up-cycling active phytochemicals. Phenolic compounds are particularly relevant in this field given their abundance in plant residues and the market interest of their functionalities (e.g. natural antioxidant activity) as part of nutraceutical, cosmetological and biomedical formulations. In "bench-to-bedside" achievements, sample extraction is essential because valorization benefits from matrix desorption and solubilization of targeted phytocompounds. Specifically, the composition and polarity of the extractant, the optimal sample particle size and sample:solvent ratio, as well as pH, pressure and temperature are strategic for the release and stability of mobilized species. On the other hand, current green chemistry environmental rules require extraction approaches that eliminate polluting consumables and reduce energy needs. Thus, the following pages provide an update on advanced technologies for the sustainable and efficient recovery of phenolics from plant matrices.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain.
| | - Tamara Forbes-Hernández
- Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-product Processing, Jiangsu University, Zhenjiang, China; Research group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| |
Collapse
|
16
|
Alemán-Jiménez C, Domínguez-Perles R, Gallego-Gómez JI, Simonelli-Muñoz A, Moine E, Durand T, Crauste C, Ferreres F, Gil-Izquierdo Á, Medina S. Fatty Acid Hydroxytyrosyl Esters of Olive Oils Are Bioaccessible According to Simulated In Vitro Gastrointestinal Digestion: Unraveling the Role of Digestive Enzymes on Their Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14165-14175. [PMID: 34797062 DOI: 10.1021/acs.jafc.1c05373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, new bioactive compounds were identified in olive oil, lipophenols, which are composed of a fatty acid (FA) and a phenolic core, such as HT (HT-FA). However, their bioaccessibility remains unknown. Thus, the present study uncovers the impact of the separate phases of gastrointestinal digestion on the release and stability of HT-FAs from oily matrices under in vitro simulated conditions. Accordingly, it was found that the bioaccessibility of HT derivatives is largely dependent on the type of FA that esterifies HT, as well as the food matrix. Also, the generation of HT-FAs during intestinal digestion was observed, with pancreatin being the enzyme responsible, to a higher extent, for the de novo formation of lipophenolic derivatives. These findings prompt us to identify new applications to oily matrices and their byproducts as potential functional ingredients for the promotion of health, where the possible formation of new lipophenols during digestion should be taken into consideration.
Collapse
Affiliation(s)
| | - Raúl Domínguez-Perles
- Department of Food Science and Technology, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, Murcia 30100, Spain
| | - Juana I Gallego-Gómez
- Departamento de Enfermería, Universidad Católica de Murcia, UCAM, Murcia 30107, Spain
| | - Agustín Simonelli-Muñoz
- Departamento de Enfermería, Fisioterapia y Medicina. Universidad de Almería, Carretera Sacramento s/n, Almería 04120, Spain
| | - Espérance Moine
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, EN-SCM, Montpellier 34093, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, EN-SCM, Montpellier 34093, France
| | - Céline Crauste
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, EN-SCM, Montpellier 34093, France
| | - Federico Ferreres
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, Universidad Católica de Murcia, UCAM, Murcia 30107, Spain
| | - Ángel Gil-Izquierdo
- Department of Food Science and Technology, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, Murcia 30100, Spain
| | - Sonia Medina
- Department of Food Science and Technology, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, Murcia 30100, Spain
| |
Collapse
|
17
|
Sik B, Székelyhidi R, Lakatos E, Kapcsándi V, Ajtony Z. Analytical procedures for determination of phenolics active herbal ingredients in fortified functional foods: an overview. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03908-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractFortification of foods with phenolic compounds is becoming increasingly popular due to their beneficial physiological effects. The biological activities reported include antioxidant, anticancer, antidiabetic, anti-inflammatory, or neuroprotective effects. However, the analysis of polyphenols in functional food matrices is a difficult task because of the complexity of the matrix. The main challenge is that polyphenols can interact with other food components, such as carbohydrates, proteins, or lipids. The chemical reactions that occur during the baking technologies in the bakery and biscuit industry may also affect the results of measurements. The analysis of polyphenols found in fortified foods can be done by several techniques, such as liquid chromatography (HPLC and UPLC), gas chromatography (GC), or spectrophotometry (TPC, DPPH, FRAP assay etc.). This paper aims to review the available information on analytical methods to fortified foodstuffs while as presenting the advantages and limitations of each technique.
Collapse
|
18
|
Madureira J, Margaça FMA, Santos-Buelga C, Ferreira ICFR, Verde SC, Barros L. Applications of bioactive compounds extracted from olive industry wastes: A review. Compr Rev Food Sci Food Saf 2021; 21:453-476. [PMID: 34773427 DOI: 10.1111/1541-4337.12861] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022]
Abstract
The wastes generated during the olive oil extraction process, even if presenting a negative impact for the environment, contain several bioactive compounds that have considerable health benefits. After suitable extraction and purification, these compounds can be used as food antioxidants or as active ingredients in nutraceutical and cosmetic products due to their interesting technological and pharmaceutical properties. The aim of this review, after presenting general applications of the different types of wastes generated from this industry, is to focus on the olive pomace produced by the two-phase system and to explore the challenging applications of the main individual compounds present in this waste. Hydroxytyrosol, tyrosol, oleuropein, oleuropein aglycone, and verbascoside are the most abundant bioactive compounds present in olive pomace. Besides their antioxidant activity, these compounds also demonstrated other biological properties such as antimicrobial, anticancer, or anti-inflammatory, thus being used in formulations to produce pharmaceutical and cosmetic products or in the fortification of food. Nevertheless, it is mandatory to involve both industries and researchers to create strategies to valorize these byproducts while maintaining environmental sustainability.
Collapse
Affiliation(s)
- Joana Madureira
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Loures, Portugal.,Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal.,Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s /n, Salamanca, Spain
| | - Fernanda M A Margaça
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Loures, Portugal
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s /n, Salamanca, Spain.,Unidad de Excelencia Producción, Agrícola y Medioambiente (AGRIENVIRONMENT), Parque Científico, Universidad de Salamanca, Salamanca, Spain
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Loures, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| |
Collapse
|
19
|
Reboredo-Rodríguez P, González-Barreiro C, Martínez-Carballo E, Cambeiro-Pérez N, Rial-Otero R, Figueiredo-González M, Cancho-Grande B. Applicability of an In-Vitro Digestion Model to Assess the Bioaccessibility of Phenolic Compounds from Olive-Related Products. Molecules 2021; 26:6667. [PMID: 34771074 PMCID: PMC8588322 DOI: 10.3390/molecules26216667] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022] Open
Abstract
The Mediterranean diet includes virgin olive oil (VOO) as the main fat and olives as snacks. In addition to providing nutritional and organoleptic properties, VOO and the fruits (olives) contain an extensive number of bioactive compounds, mainly phenolic compounds, which are considered to be powerful antioxidants. Furthermore, olive byproducts, such as olive leaves, olive pomace, and olive mill wastewater, considered also as rich sources of phenolic compounds, are now valorized due to being mainly applied in the pharmaceutical and nutraceutical industries. The digestive system must physically and chemically break down these ingested olive-related products to release their phenolic compounds, which will be further metabolized to be used by the human organism. The first purpose of this review is to provide an overview of the current status of in-vitro static digestion models for olive-related products. In this sense, the in-vitro gastrointestinal digestion methods are widely used with the following aims: (i) to study how phenolic compounds are released from their matrices and to identify structural changes of phenolic compounds after the digestion of olive fruits and oils and (ii) to support the functional value of olive leaves and byproducts generated in the olive industry by assessing their health properties before and after the gastrointestinal process. The second purpose of this review is to survey and discuss all the results available to date.
Collapse
Affiliation(s)
| | | | | | | | | | - María Figueiredo-González
- Food and Health Omics, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo, 32004-Ourense, Spain; (P.R.-R.); (C.G.-B.); (E.M.-C.); (N.C.-P.); (R.R.-O.); (B.C.-G.)
| | | |
Collapse
|
20
|
Rikhtehgaran S, Katouzian I, Jafari SM, Kiani H, Maiorova LA, Takbirgou H. Casein-based nanodelivery of olive leaf phenolics: Preparation, characterization and release study. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Phenolic Compounds from Irradiated Olive Wastes: Optimization of the Heat-Assisted Extraction Using Response Surface Methodology. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Olive pomace, an environmentally detrimental residue generated during olive oil extraction, contains bioactive compounds in demand by the food industry. To valorize this waste product a suitable yield for the extraction process is required. Heat-assisted extraction of bioactive compounds from olive pomace was optimized by a circumscribed central composite design and response surface methodology. Our previous studies indicated that irradiation could improve 2.4-fold the extractability of the main phenolic compounds from olive pomace. The effect of extraction time, temperature and solvent concentration on the yield of polyphenols from irradiated olive pomace at 5 kGy was tested. Hydroxytyrosol-1-β-glucoside, hydroxytyrosol, tyrosol and caffeic acid were quantified by High Performance Liquid Chromatography to calculate the total polyphenol content. The optimal general conditions by RSM modeling were extraction time of 120 min, temperature of 85 °C, and 76% of ethanol in water. Using these selected conditions, 19.04 ± 1.50 mg/g dry weight, 148.88 ± 8.73 mg/g extract of total polyphenols were obtained, representing a yield of 13.7%, which was consistent with the value predicted by the model. This work demonstrated the potential of residues from the olive oil industry as a suitable alternative to obtain compounds that could be used as ingredients for the food industry.
Collapse
|
22
|
Bioactive Compounds in Waste By-Products from Olive Oil Production: Applications and Structural Characterization by Mass Spectrometry Techniques. Foods 2021; 10:foods10061236. [PMID: 34072297 PMCID: PMC8227576 DOI: 10.3390/foods10061236] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022] Open
Abstract
In recent years, a remarkable increase in olive oil consumption has occurred worldwide, favoured by its organoleptic properties and the growing awareness of its health benefits. Currently, olive oil production represents an important economic income for Mediterranean countries, where roughly 98% of the world production is located. Both the cultivation of olive trees and the production of industrial and table olive oil generate huge amounts of solid wastes and dark liquid effluents, including olive leaves and pomace and olive oil mill wastewaters. Besides representing an economic problem for producers, these by-products also pose serious environmental concerns, thus their partial reuse, like that of all agronomical production residues, represents a goal to pursue. This aspect is particularly important since the cited by-products are rich in bioactive compounds, which, once extracted, may represent ingredients with remarkable added value for food, cosmetic and nutraceutical industries. Indeed, they contain considerable amounts of valuable organic acids, carbohydrates, proteins, fibers, and above all, phenolic compounds, that are variably distributed among the different wastes, depending on the employed production process of olive oils and table olives and agronomical practices. Yet, extraction and recovery of bioactive components from selected by-products constitute a critical issue for their rational valorization and detailed identification and quantification are mandatory. The most used analytical methods adopted to identify and quantify bioactive compounds in olive oil by-products are based on the coupling between gas- (GC) or liquid chromatography (LC) and mass spectrometry (MS), with MS being the most useful and successful detection tool for providing structural information. Without derivatization, LC-MS with electrospray (ESI) or atmospheric pressure chemical (APCI) ionization sources has become one of the most relevant and versatile instrumental platforms for identifying phenolic bioactive compounds. In this review, the major LC-MS accomplishments reported in the literature over the last two decades to investigate olive oil processing by-products, specifically olive leaves and pomace and olive oil mill wastewaters, are described, focusing on phenolics and related compounds.
Collapse
|
23
|
Silva AFR, Resende D, Monteiro M, Coimbra MA, Silva AMS, Cardoso SM. Application of Hydroxytyrosol in the Functional Foods Field: From Ingredient to Dietary Supplements. Antioxidants (Basel) 2020; 9:antiox9121246. [PMID: 33302474 PMCID: PMC7763879 DOI: 10.3390/antiox9121246] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Hydroxytyrosol (HT) is an amphipathic functional phenol found in the olive tree, both in its leaves and fruits, in free or bound forms, as well as in olive oil and by-products of olive oil manufacture. The European Food Safety Authority recommends regular consumption of HT due to its several beneficial effects on human health, which are closely associated to its antioxidant activity. These reasons make HT an excellent candidate for application as a functional ingredient in the design of novel food products. Patents already exist for methodologies of extraction, purification, and application of HT in supplements and food products. The present review discusses the impact of HT incorporation on food properties and its effects on consumers, based on relevant data related to the use of HT as a functional ingredient, both as a pure compound or in the form of HT-rich extracts, in various food products, namely in edible oils, beverages, bakery products, as well animal-based foods such as meat, fishery and dairy products.
Collapse
|
24
|
Functional Ingredients from Agri-Food Waste: Effect of Inclusion Thereof on Phenolic Compound Content and Bioaccessibility in Bakery Products. Antioxidants (Basel) 2020; 9:antiox9121216. [PMID: 33276525 PMCID: PMC7761272 DOI: 10.3390/antiox9121216] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Reducing food loss and waste is among the efforts to relieve the pressure on natural resources and move towards more sustainable food systems. Alternative pathways of food waste management include valorization of by-products as a source of phenolic compounds for formulation of functional foods. Bakery products may act as an optimal carrier of phenolic compounds upon fortification. The aim of this paper is to present and discuss the effect that the inclusion of functional ingredients from agri-food waste can have on phenolic content and bioaccessibility in bakery products. To this aim, methods for the recovery of phenolic compounds from agri-food waste are presented, and fortification of bakery products by waste from fruits, vegetables, and seed crops is discussed. Bioaccessibility studies on fortified food products are considered to identify gaps and needs in developing sustainable healthy foods. Fruit and vegetable by-products are among the food wastes mostly valorized as functional ingredients in bakery product formulation. Agri-food waste inclusion level has shown to correlate positively with the increase in phenolic content and antioxidant capacity. Nevertheless, further studies are required to assess bioaccessibility and bioavailability of phenolic compounds in enriched food products to estimate the potential of agri-food waste in promoting human health and well-being.
Collapse
|