1
|
Raczkowska E, Serek P. Health-Promoting Properties and the Use of Fruit Pomace in the Food Industry-A Review. Nutrients 2024; 16:2757. [PMID: 39203893 PMCID: PMC11357471 DOI: 10.3390/nu16162757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Fruit pomace, a by-product of the fruit industry, includes the skins, seeds, and pulp most commonly left behind after juice extraction. It is produced in large quantities: apple residues alone generate approximately 4 million tons of waste annually, which is a serious problem for the processing industry but also creates opportunities for various applications. Due to, among other properties, their high content of dietary fiber and polyphenolic compounds, fruit residues are used to design food with functional features, improving the nutritional value and health-promoting, technological, and sensory properties of food products. This article presents the health-promoting (antioxidant, antidiabetic, anti-inflammatory, and antibacterial) properties of fruit pomace. Moreover, the possibilities of their use in the food industry are characterized, with particular emphasis on bread, sweet snack products, and extruded snacks. Attention is paid to the impact of waste products from the fruit industry on the nutritional value and technological and sensory characteristics of these products. Fruit pomace is a valuable by-product whose use in the food industry can provide a sustainable solution for waste management and contribute to the development of functional food products with targeted health-promoting properties.
Collapse
Affiliation(s)
- Ewa Raczkowska
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wroclaw, Poland;
| | | |
Collapse
|
2
|
Ekielski A, Żelaziński T, Kulig R, Kupczyk A. Properties of Biocomposites Made of Extruded Apple Pomace and Potato Starch: Mechanical and Physicochemical Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2681. [PMID: 38893945 PMCID: PMC11173434 DOI: 10.3390/ma17112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
This paper presents research results on biocomposites made from a combination of extruded apple pomace (EAP) and potato starch (SP). The aim of this work was to investigate the basic properties of biocomposites obtained from extruded apple pomace reinforced with potato starch. The products were manufactured by hot pressing using a hydraulic press with a mould for producing samples. The prepared biocomposites were subjected to strength tests, surface wettability was determined, and a colour analysis was carried out. A thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and cross-sectioning observed in a scanning electron microscope (SEM) were also performed. The obtained test results showed that the combination of apple pomace (EAP) and starch (SP) enabled the production of compact biocomposite materials. At the same time, it was found that each increase in the share of starch in the mixture for producing biocomposites increased the strength parameters of the obtained materials. With the highest share of starch in the mixture, 40%, and a raw material moisture content of 14%, the material had the best strength parameters and was even characterised by hydrophobic properties. It was also found that materials with a high content of starch are characterised by increased temperature resistance. The analysis of SEM microscopic photos showed well-glued particles of apple pomace, pectin, and gelatinised starch and a smooth external structure of the samples. Research and analyses have shown that apple pomace reinforced only with the addition of starch can be a promising raw material for the production of simple, biodegradable biocomposite materials.
Collapse
Affiliation(s)
- Adam Ekielski
- Department of Production Engineering, Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska 164, 02-787 Warsaw, Poland; (A.E.); (A.K.)
| | - Tomasz Żelaziński
- Department of Production Engineering, Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska 164, 02-787 Warsaw, Poland; (A.E.); (A.K.)
| | - Ryszard Kulig
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Adam Kupczyk
- Department of Production Engineering, Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska 164, 02-787 Warsaw, Poland; (A.E.); (A.K.)
| |
Collapse
|
3
|
Karwacka M, Galus S, Janowicz M. The effect of apple pomace powder and calcium ions on selected physicochemical properties of freeze-dried carrot-orange-ginger snacks. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1713-1722. [PMID: 37851851 DOI: 10.1002/jsfa.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/27/2023] [Accepted: 10/19/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND This study aimed to determine the effect of various amounts of dried apple pomace (AP) powder and calcium ions on selected physicochemical properties of restructured freeze-dried snacks in comparison with products obtained with low-methoxyl pectin (LMP). The material was prepared using frozen carrot, orange concentrate, ginger, water, and various concentrations of AP (1, 3, 5%) and calcium lactate (0, 0.01, 0.05%). The reference samples were without additives, and with 0.5 or 1.5% of LMP combined with 0.01% of calcium lactate. RESULTS The material was studied in terms of water content and activity, hygroscopic properties, structure, texture, color, and polyphenol content (TPC), and antioxidant activity. The addition of AP resulted in reducing water activity and porosity. As a consequence of the increasing density of the structure, the reduction of hygroscopic properties by up to 16% followed the increasing amount of AP. Apple pomace and calcium ions strengthened the structure. The addition of 3% and 5% of AP gave a hardening effect close to or better than 0.5% LMP. Because of the pigment dilution, LMP caused significantly greater total color change than AP. The incorporation of AP also increased TPC and enhanced antioxidant activity in comparison with the reference materials by up to 18%. CONCLUSION The results showed that dried AP powder can be applied successfully as an additive enhancing stability, texture and bioactive compound content, thus fortifying the physicochemical properties of restructured freeze-dried fruit and vegetable snacks. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Magdalena Karwacka
- Department of Food Engineering and Process Management, Warsaw University of Life Sciences, SGGW, Warsaw, Poland
| | - Sabina Galus
- Department of Food Engineering and Process Management, Warsaw University of Life Sciences, SGGW, Warsaw, Poland
| | - Monika Janowicz
- Department of Food Engineering and Process Management, Warsaw University of Life Sciences, SGGW, Warsaw, Poland
| |
Collapse
|
4
|
Brennan CS. Regenerative Food Innovation: The Role of Agro-Food Chain By-Products and Plant Origin Food to Obtain High-Value-Added Foods. Foods 2024; 13:427. [PMID: 38338562 PMCID: PMC10855700 DOI: 10.3390/foods13030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Food losses in the agri-food sector have been estimated as representing between 30 and 80% of overall yield. The agro-food sector has a responsibility to work towards achieving FAO sustainable goals and global initiatives on responding to many issues, including climate pressures from changes we are experiencing globally. Regenerative agriculture has been discussed for many years in terms of improving our land and water. What we now need is a focus on the ability to transform innovation within the food production and process systems to address the needs of society in the fundamental arenas of food, health and wellbeing in a sustainable world. Thus, regenerative food innovation presents an opportunity to evaluate by-products from the agriculture and food industries to utilise these waste streams to minimise the global effects of food waste. The mini-review article aims to illustrate advancements in the valorisation of foods from some of the most recent publications published by peer-reviewed journals during the last 4-5 years. The focus will be applied to plant-based valorised food products and how these can be utilised to improve food nutritional components, texture, sensory and consumer perception to develop the foods for the future.
Collapse
|
5
|
Kumari N, Kumar M, Radha, Rais N, Puri S, Sharma K, Natta S, Dhumal S, Damale RD, Kumar S, Senapathy M, Deshmukh SV, Anitha T, Prabhu T, Shenbagavalli S, Balamurugan V, Lorenzo JM, Kennedy JF. Exploring apple pectic polysaccharides: Extraction, characterization, and biological activities - A comprehensive review. Int J Biol Macromol 2024; 255:128011. [PMID: 37951444 DOI: 10.1016/j.ijbiomac.2023.128011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/06/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Apple (Malus domestica) is a popular and ancient fruit of the Myrtaceae family. Apple fruit is well-known for its great nutritional and phytochemical content consisted of beneficial compounds such as polyphenols, polysaccharides, sterols, and organic acids. Polysaccharides extracted from different parts of the apple fruit, including the peel, pomace, or the whole fruit, have been extensively studied. Researchers have investigated the structural characteristics of these polysaccharides, such as molecular weight, type of monosaccharide unit, type of linkage and its position and arrangement. Besides this, functional properties and physicochemical and of apple polysaccharides have also been studied, along with the effects of extraction procedures, storage, and processing on cell wall polysaccharides. Various extraction techniques, including hot water extraction, enzymatic extraction, and solvent-assisted extraction, have been studied. From the findings, it was evident that apple polysaccharides are mainly composed of (1 → 3), (1 → 6): α-β-glycosidic linkage. Moreover, the apple polysaccharides were demonstrated to exhibit antioxidant, hepatoprotective, anti-cancer, hypoilipidemic, and enzyme inhibitory properties in vitro and in vivo. The potential applications of apple polysaccharides in the food, cosmetic, pharmaceutical, nutraceutical industries have also been explored in the present review. Overall, the research on apple polysaccharides highlights their significant potential as a source of biologically active compounds with various health benefits and practical applications.
Collapse
Affiliation(s)
- Neeraj Kumari
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India.
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer, Rajasthan 305004, India
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Kanika Sharma
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Suman Natta
- ICAR-National Research Centre for Orchids, Pakyong 737106, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India
| | - Rahul D Damale
- ICAR-National Research Centre on Pomegranate, Solapur 413255, India
| | - Sunil Kumar
- Indian Institute of Farming Systems Research, Modipuram 250110, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Sheetal Vishal Deshmukh
- Bharati Vidyapeeth (Deemed to be University), Yashwantrao Mohite Institute of Management, Karad, India
| | - T Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Periyakulam 625604, India
| | - T Prabhu
- Department of Spices and Plantation Crops, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Periyakulam 625604, India
| | - S Shenbagavalli
- Department of Natural Resource and Management, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Periyakulam 625604, India
| | - V Balamurugan
- Department of Agricultural Economics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Avd. Galicia n° 4, San Cibrao das Viñas, 32900 Ourense, Spain
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, Kyrewood House, Tenbury Wells, Worcs WR15 8FF, UK
| |
Collapse
|
6
|
Benítez V, Rebollo-Hernanz M, Braojos C, Cañas S, Gil-Ramírez A, Aguilera Y, Martín-Cabrejas MA. Changes in the cocoa shell dietary fiber and phenolic compounds after extrusion determine its functional and physiological properties. Curr Res Food Sci 2023; 6:100516. [PMID: 37215741 PMCID: PMC10196956 DOI: 10.1016/j.crfs.2023.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/09/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
The influence of different extrusion conditions on the cocoa shell (CS) dietary fiber, phenolic compounds, and antioxidant and functional properties was evaluated. Extrusion produced losses in the CS dietary fiber (3-26%), especially in the insoluble fraction, being more accentuated at higher temperatures (160 °C) and lower moisture feed (15-20%). The soluble fiber fraction significantly increased at 135 °C because of the solubilization of galactose- and glucose-containing insoluble polysaccharides. The extruded CS treated at 160 °C-25% of feed moisture showed the highest increase of total (27%) and free (58%) phenolic compounds, accompanied by an increase of indirect (10%) and direct (77%) antioxidant capacity. However, more promising results relative to the phenolic compounds' bioaccessibility after in vitro simulated digestion were observed for 135°C-15% of feed moisture extrusion conditions. The CS' physicochemical and techno-functional properties were affected by extrusion, producing extrudates with higher bulk density, a diminished capacity to hold oil (22-28%) and water (18-65%), and improved swelling properties (14-35%). The extruded CS exhibited increased glucose adsorption capacity (up to 2.1-fold, at 135 °C-15% of feed moisture) and α-amylase in vitro inhibitory capacity (29-54%), accompanied by an increase in their glucose diffusion delaying ability (73-91%) and their starch digestion retardation capacity (up to 2.8-fold, at 135 °C-15% of feed moisture). Moreover, the extruded CS preserved its cholesterol and bile salts binding capacity and pancreatic lipase inhibitory properties. These findings generated knowledge of the CS valorization through extrusion to produce foods rich in dietary fiber with improved health-promoting properties due to the extrusion-triggered fiber solubilization.
Collapse
Affiliation(s)
- Vanesa Benítez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC). C/ Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC). C/ Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Cheyenne Braojos
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC). C/ Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Silvia Cañas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC). C/ Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Alicia Gil-Ramírez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC). C/ Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC). C/ Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María A. Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC). C/ Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
7
|
The Effect of Fresh Kale ( Brassica oleracea var. sabellica) Addition and Processing Conditions on Selected Biological, Physical, and Chemical Properties of Extruded Snack Pellets. Molecules 2023; 28:molecules28041835. [PMID: 36838822 PMCID: PMC9964093 DOI: 10.3390/molecules28041835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The purpose of this study was to determine the effect of the addition of fresh kale and processing conditions on extruded pellet antioxidant activity and selected physicochemical properties. The results of the applied DPPH, FRAP, and TPC methods indicated that, for both 60 and 100 rpm screw speeds, snack pellet antioxidant activity and phenolic content were strongly linked to the fresh kale content, and these properties increased with the addition of this plant. The amount of fresh kale and the applied processing variables (extruder screw speed and the moisture content of the raw material blends) were also found to significantly affect the water absorption index, water solubility index, fat absorption index, fatty acid profile, and basic chemical composition of the obtained extrudates. The sample with the highest phenolic content (72.8 μg GAE/g d.w.), the most advantageous chemical composition (protein, ash, fat, carbohydrates, and fiber content), and high antioxidant properties was produced at a fresh kale content of 30%, a 36% moisture content, and a 100 rpm screw speed. The following phenolic acids were identified in this sample: protocatechuic, 4-OH-benzoic, vanillic, syringic, salicylic, caffeic, coumaric, ferulic, and sinapic. Sinapic acid was the prevailing phenolic acid.
Collapse
|
8
|
Iqbal S, Tirpanalan-Staben Ö, Franke K. Modification of Dietary Fibers to Valorize the By-Products of Cereal, Fruit and Vegetable Industry-A Review on Treatment Methods. PLANTS (BASEL, SWITZERLAND) 2022; 11:3466. [PMID: 36559578 PMCID: PMC9781242 DOI: 10.3390/plants11243466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Many by-products originating from cereal, fruit and vegetable industries contain quite high amounts of dietary fiber (DF), which play an important role in maintaining the healthy state of the human body. Nevertheless, huge proportions of these by-products are still underutilized as feed ingredients, to generate energy within an anaerobic digestion plant or even landfilled. One of the biggest hindrances in the valorization of such by-products is their very low soluble dietary fiber (SDF) to insoluble dietary fiber (IDF) ratios, impairing their nutritional functionality, palatability and technological applicability. Therefore, it is of interest to develop methods that can enhance the SDF to IDF ratio and that can be applied to the by-product streams of the food industry, enabling better valorization perspectives for human nutrition purposes. In this regard, the review paper provides an overview of existing technologies to modify the SDF to IDF ratio in by-products of the food industry by means of physical, chemical and biological treatments. For each type of treatment, available data on application examples including achieved increases in SDF contents are given. Additionally, a comparative discussion regarding the advantages and disadvantages of these methods is provided.
Collapse
|
9
|
Effect of the Production Parameters and In Vitro Digestion on the Content of Polyphenolic Compounds, Phenolic Acids, and Antiradical Properties of Innovative Snacks Enriched with Wild Garlic ( Allium ursinum L.) Leaves. Int J Mol Sci 2022; 23:ijms232214458. [PMID: 36430937 PMCID: PMC9692538 DOI: 10.3390/ijms232214458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
A new type of corn snack has been created containing additions of wild garlic (Allium ursinum L.). This medicinal and dietary plant has a long tradition of use in folk medicine. However, studies on wild garlic composition and activity are fairly recent and scarce. This research aimed to investigate the influence of the screw speed and A. ursinum amounts on the antiradical properties as well as the content of polyphenolic compounds and individual phenolic acids of innovative snacks enriched with wild garlic leaves. The highest radical scavenging activity and content of polyphenols and phenolic acids were found in the snacks enriched with 4% wild garlic produced using screw speed 120 rpm. The obtained findings demonstrated that snacks enriched with wild garlic are a rich source of polyphenolic compounds. Since the concentration of such compounds is affected by many factors, e.g., plant material, presence of other compounds, and digestion, the second aim of this study was to determine radical scavenging activity, the content of polyphenols, and individual phenolic acids of snacks after in vitro simulated gastrointestinal digestion. Using an in vitro two-stage model, authors noted a significant difference between the concentration of polyphenolic compounds and the polyphenol content of the plant material before digestion.
Collapse
|
10
|
Igual M, Martínez-Monzó J. Physicochemical Properties and Structure Changes of Food Products during Processing. Foods 2022; 11:foods11152365. [PMID: 35954131 PMCID: PMC9368395 DOI: 10.3390/foods11152365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
|
11
|
Trabert A, Schmid V, Keller J, Emin MA, Bunzel M. Chemical composition and technofunctional properties of carrot (Daucus carota L.) pomace and potato (Solanum tuberosum L.) pulp as affected by thermomechanical treatment. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractFiber rich by-products derived from primary agri-food production such as carrot pomace and potato pulp are available in large quantities, but their functional properties do not necessarily meet the requirements for use in specific food applications. Thermomechanical treatment (extrusion) of carrot pomace and potato pulp changes both dietary fiber polysaccharide structures and technofunctionality of the materials. Solubility of dietary fiber constituents changes, resulting in higher levels of water- and ethanol-soluble poly-/oligosaccharides. On a structural level, particularly arabinans and galactans as neutral side chains of type I rhamnogalacturonan were degraded under thermomechanical stress. Galacturonic acid portions (preferably from homogalacturonan or rhamnogalacturonan I) and their degree of methylation were also negatively affected. On a functional level, water absorption of potato pulp increased up to three times following extrusion, whereas water absorption of carrot pomace decreased with extrusion processing. The observed, enhanced swelling behavior for extruded carrot pomace was accompanied by higher complex viscosity of the dispersions. Swelling of potato pulp particles increased largely (up to 25 times) following extrusion, resulting in highly viscous pastes. Phytochemicals were retained up to 50%, heat-induced contaminants were formed only to a small extent (up to 8.1 mg 5-hydroxymethylfurfural·kg− 1 dry matter for carrot pomace; up to 71 µg acrylamide·kg− 1 dry matter for potato pulp).
Graphical abstract
Collapse
|
12
|
Khanpit VV, Tajane SP, Mandavgane SA. Extrusion for Soluble Dietary Fiber Concentrate: Critical Overview on Effect of Process Parameters on Physicochemical, Nutritional, and Biological Properties. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2097689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Vishal V Khanpit
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Sonali P Tajane
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Sachin A Mandavgane
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| |
Collapse
|
13
|
Perez‐Pirotto C, Cozzano S, Hernando I, Arcia P. Different green extraction technologies for soluble dietary fibre extraction from orange by‐product. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Claudia Perez‐Pirotto
- Departamento de Ingeniería Comandante Braga 2715 (11600) Universidad Católica del Uruguay Montevideo 11600 Uruguay
- Food Microstructure and Chemistry Research Group Department of Food Technology Universitat Politècnica de València Valencia 46022 Spain
| | - Sonia Cozzano
- Departamento de Ingeniería Comandante Braga 2715 (11600) Universidad Católica del Uruguay Montevideo 11600 Uruguay
| | - Isabel Hernando
- Food Microstructure and Chemistry Research Group Department of Food Technology Universitat Politècnica de València Valencia 46022 Spain
| | - Patricia Arcia
- Departamento de Ingeniería Comandante Braga 2715 (11600) Universidad Católica del Uruguay Montevideo 11600 Uruguay
- Latitud Latu Foundation Montevideo 11500 Uruguay
| |
Collapse
|
14
|
Schmid V, Mayer-Miebach E, Behsnilian D, Briviba K, Karbstein HP, Emin MA. Enrichment of starch-based extruded cereals with chokeberry (Aronia melanocarpa) pomace: Influence of processing conditions on techno-functional and sensory related properties, dietary fibre and polyphenol content as well as in vitro digestibility. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Dey D, Gu BJ, Ek P, Rangira I, Saunders SR, Kiszonas AM, Ganjyal GM. Apple pomace pretreated with hydrochloric acid exhibited better adherence with the corn starch during extrusion expansion. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
16
|
Schmid V, Trabert A, Keller J, Bunzel M, Karbstein HP, Emin MA. Defined shear and heat treatment of apple pomace: impact on dietary fiber structures and functional properties. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03776-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractFood by-products can be modified by extrusion processing. However, the impact of thermal and mechanical stress, respectively, on the structure and thus functional properties of dietary fiber-rich food by-products is still unknown. In the extrusion process, thermal and mechanical stress are coupled, not constant, and difficult to measure or calculate. Thus, their influence on structural changes and functional properties cannot be evaluated separately. In this work, a specific shear cell, denoted by closed cavity rheometer, was used to treat apple pomace with defined thermal and/or mechanical stress. Dietary fiber composition and fiber polysaccharide structures appeared to be more susceptible to high temperatures than mechanical stress. With increasing temperature (and mechanical stress) soluble and low-molecular-weight soluble dietary fiber contents increased, whereas insoluble fiber contents decreased. Arabinans as rhamnogalacturonan type I polysaccharides and galacturonic acid containing pectic polysaccharides were identified as being most susceptible to degradation under these conditions. Furthermore, the defined treatment affected the functional properties. Although changes in the water solubility index (WSI) and/or the water absorption index (WAI) were not detected up to 90 °C, WSI and WAI decreased significantly at a treatment temperature of 120 °C. However, at very high temperatures (160 °C), WSI and WAI increased. The application of shear and longer treatment times resulted in higher WSI values and complex viscosities as compared to low shear stress.
Graphic abstract
Collapse
|
17
|
Dietary Fiber and Prebiotic Compounds in Fruits and Vegetables Food Waste. SUSTAINABILITY 2021. [DOI: 10.3390/su13137219] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The fruits and vegetables processing industry is one of the most relevant food by-products, displaying limited commercial exploitation entailing economic and environmental problems. However, these by-products present a considerable amount of dietary fiber and prebiotics with important biological activities, such as gut microbiota modulation, lowering the glycemic load and replacing some unhealthy ingredients with an impact on food texture. Therefore, the international scientific community has considered incorporating their extracts or powders to preserve or fortify food products an area of interest, mainly because nowadays consumers demand the production of safer and health-promoting foods. In the present review, literature, mainly from the last 5 years, is critically analyzed and presented. A particular focus is given to utilizing the extracted dietary fibers in different food products and their impact on their characteristics. Safety issues regarding fruits and vegetables wastes utilization and anti-nutritional compounds impact were also discussed.
Collapse
|
18
|
Schmid V, Steck J, Mayer-Miebach E, Behsnilian D, Bunzel M, Karbstein HP, Emin MA. Extrusion Processing of Pure Chokeberry ( Aronia melanocarpa) Pomace: Impact on Dietary Fiber Profile and Bioactive Compounds. Foods 2021; 10:518. [PMID: 33801434 PMCID: PMC8001653 DOI: 10.3390/foods10030518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022] Open
Abstract
The partial substitution of starch with dietary fiber (DF) in extruded ready-to-eat texturized (RTE) cereals has been suggested as a strategy to reduce the high glycemic index of these food products. Here, we study the impact of extrusion processing on pure chokeberry (Aronia melanocarpa) pomace powder (CPP) rich in DF and polyphenols (PP) focusing on the content and profile of the DF fractions, stability of PP, and techno-functional properties of the extrudates. Using a co-rotating twin-screw extruder, different screw speeds were applied to CPP with different water contents (cw), which resulted in specific mechanical energies (SME) in the range of 145-222 Whkg-1 and material temperatures (TM) in the range of 123-155 °C. High molecular weight soluble DF contents slightly increase with increasing thermomechanical stress up to 16.1 ± 0.8 g/100 g dm as compared to CPP (11.5 ± 1.2 g/100 g dm), but total DF (TDF) contents (58.6 ± 0.8 g/100 g dm) did not change. DF structural analysis revealed extrusion-based changes in the portions of pectic polysaccharides (type I rhamnogalacturonan) in the soluble and insoluble DF fractions. Contents of thermolabile anthocyanins decrease linearly with SME and temperature from 1.80 ± 0.09 g/100 g dm in CPP to 0.24 ± 0.06 g/100 g dm (222 Whkg-1, 155 °C), but phenolic acids and flavonoids appear to be largely unaffected. Resulting techno-functional (water absorption and water solubility) and physical properties related to the sensory characteristics (expansion, hardness, and color) of pure CPP extrudates support the expectation that granulated CPP extrudates may be a suitable food ingredient rich in DF and PP.
Collapse
Affiliation(s)
- Vera Schmid
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut (MRI), 76131 Karlsruhe, Germany; (V.S.); (D.B.)
- Institute of Process Engineering in Life Sciences, Section I: Food Process Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (H.P.K.); (M.A.E.)
| | - Jan Steck
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (J.S.); (M.B.)
| | - Esther Mayer-Miebach
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut (MRI), 76131 Karlsruhe, Germany; (V.S.); (D.B.)
| | - Diana Behsnilian
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut (MRI), 76131 Karlsruhe, Germany; (V.S.); (D.B.)
| | - Mirko Bunzel
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (J.S.); (M.B.)
| | - Heike P. Karbstein
- Institute of Process Engineering in Life Sciences, Section I: Food Process Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (H.P.K.); (M.A.E.)
| | - M. Azad Emin
- Institute of Process Engineering in Life Sciences, Section I: Food Process Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (H.P.K.); (M.A.E.)
| |
Collapse
|
19
|
The Impact of Formulation on the Content of Phenolic Compounds in Snacks Enriched with Dracocephalum moldavica L. Seeds: Introduction to Receiving a New Functional Food Product. Molecules 2021; 26:molecules26051245. [PMID: 33669143 PMCID: PMC7956280 DOI: 10.3390/molecules26051245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 11/24/2022] Open
Abstract
A new type of multigrain snack has been designed containing varied additions of Moldavian dragonhead (Dracocephalum moldavica L.) seeds. The antioxidant properties and the general health benefits of this plant material have already been widely acknowledged. The research discussed herein aimed to investigate the influence of the formulation and expansion method (frying) on the content of polyphenolic compounds, individual phenolic acids, and antiradical properties of innovative snacks enriched with dragonhead seeds. The highest content of polyphenols (0.685 mg GAE/mL), free phenolic acids (47.052 µg/g of dry matter), and highest radical scavenging activity (96.23% towards DPPH) were found in the fried snacks enriched with 22% of seeds. In these samples, 11 phenolic acids were detected. Strong positive correlations were seen between the addition of dragonhead and the polyphenol content (r = 0.989) and between the quantity of the enriching additive and the content of free phenolic acids (r = 0.953). The research has shown that such innovative snacks have the potential to supply health-benefiting free phenolic acids, e.g., salicylic, isoferulic, ferulic, p-coumaric, vanillic. Our studies provide an introduction to the development of a new range of functional foods.
Collapse
|
20
|
Schmid V, Trabert A, Keller J(S, Bunzel M, Karbstein HP, Emin MA. Functionalization of Enzymatically Treated Apple Pomace from Juice Production by Extrusion Processing. Foods 2021; 10:foods10030485. [PMID: 33668342 PMCID: PMC7996331 DOI: 10.3390/foods10030485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
Food by-products can be used as natural and sustainable food ingredients. However, a modification is needed to improve the technofunctional properties according to the specific needs of designated applications. A lab-scale twin-screw extruder was used to process enzymatically treated apple pomace from commercial fruit juice production. To vary the range of the thermomechanical treatment, various screw speeds (200, 600, 1000 min−1), and screw configurations were applied to the raw material. Detailed chemical and functional analyses were performed to develop a comprehensive understanding of the impact of the extrusion processing on apple pomace composition and technofunctional properties as well as structures of individual polymers. Extrusion at moderate thermomechanical conditions increased the water absorption, swelling, and viscosity of the material. An increase in thermomechanical stress resulted in a higher water solubility index, but negatively affected the water absorption index, viscosity, and swelling. Scanning electron microscopy showed an extrusion-processing-related disruption of the cell wall. Dietary fiber analysis revealed an increase of soluble dietary fiber from 12.6 to 17.2 g/100 g dry matter at maximum thermo-mechanical treatment. Dietary fiber polysaccharide analysis demonstrated compositional changes, mainly in the insoluble dietary fiber fraction. In short, pectin polysaccharides seem to be susceptible to thermo-mechanical stress, especially arabinans as neutral side chains of rhamnogalacturonan I.
Collapse
Affiliation(s)
- Vera Schmid
- Institute of Process Engineering in Life Sciences, Chair of Food Process Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (V.S.); (H.P.K.)
| | - Antje Trabert
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (A.T.); (J.K.); (M.B.)
| | - Judith (Schäfer) Keller
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (A.T.); (J.K.); (M.B.)
| | - Mirko Bunzel
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (A.T.); (J.K.); (M.B.)
| | - Heike P. Karbstein
- Institute of Process Engineering in Life Sciences, Chair of Food Process Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (V.S.); (H.P.K.)
| | - M. Azad Emin
- Institute of Process Engineering in Life Sciences, Chair of Food Process Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (V.S.); (H.P.K.)
- Correspondence: ; Tel.: +49-721-608-48311
| |
Collapse
|
21
|
The Influence of Extrusion Processing on the Gelation Properties of Apple Pomace Dispersions: Involved Cell Wall Components and Their Gelation Kinetics. Foods 2020; 9:foods9111536. [PMID: 33113839 PMCID: PMC7692084 DOI: 10.3390/foods9111536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/10/2023] Open
Abstract
By-products of fruits and vegetables like apple pomace can serve as techno-functional ingredients in foods. Due to their physicochemical properties, e.g., viscosity, water absorption, or oil-binding, food by-products can modify the texture and sensory perception of products like yogurts and baked goods. It is known that, by extrusion processing, the properties of by-products can be altered. For example, by thermo-mechanical treatment, the capacity of food by-products to increase viscosity is improved. However, the mechanism and involved components leading to the viscosity increase are unknown. Therefore, the complex viscosity of apple pomace dispersions and the involved fractions as pectin (a major part of the water-soluble fraction), water-soluble and water-insoluble fraction, were measured. In the investigated range, an increase in the pectin yield and water solubility was observed with increasing thermo-mechanical treatment by extrusion processing. However, pectin and water-soluble cell wall components had only a limited effect on the complex viscosity of apple pomace dispersions. The insoluble fraction (particles) were investigated regarding their swelling behavior and influence on the complex viscosity. An intensification of thermo-mechanical treatment resulted in increasing swelling behavior.
Collapse
|