1
|
Paulin M, Miot-Sertier C, Miranda J, Vallet-Courbin A, Maupeu J, Delattre C, Coulon J, Moine V, Marchal A, Roi S, Doco T, Dols-Lafargue M. Does Fungal Chitosan Leave Noticeable Traces in Treated Wines? Foods 2024; 13:3367. [PMID: 39517150 PMCID: PMC11544894 DOI: 10.3390/foods13213367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Background (1): The use of fungal chitosan as an antiseptic in wine appears as a promising alternative to sulfur dioxide for the elimination of Brettanomyces bruxellensis sensitive strains. Nevertheless, its utilization raises the question, "how are the treated wines different from the untreated ones?" Methods (2): Chitosan treatment residues were sought in the oligosaccharide and polysaccharide fractions and among 224 low MW ions (<1800 g·mol-1) in several wines by using liquid chromatography (size exclusion HPLC or LC-MS) and GC-MS. Standard oenological parameters were also examined as well as possible sensory modifications by a panel of tasters composed of experts and non-experts. Results (3): None of these methods enabled the reproducible and reliable identification of a treated wine without comparing it to its untreated control. The fingerprints of treatment are not reliably detectable by the analytical methods used in this study. However, the treated wines seem permanently protected against the development of chitosan-sensitive strains of B. bruxellensis. Conclusions (4): If chitosan treatment modifies the wine, the associated changes were not identified by the liquid chromatography method mentioned above and they were not perceived by most people in our taster panel. However, the expected antimicrobial action of chitosan was observed on B. bruxellensis sensitive strains and persisted at least one year. Tolerant strains were less affected by these persistent effects.
Collapse
Affiliation(s)
- Margot Paulin
- ISVV and Institute Pascal, University of Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France; (M.P.); (C.M.-S.); (J.M.); (A.M.)
| | - Cécile Miot-Sertier
- ISVV and Institute Pascal, University of Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France; (M.P.); (C.M.-S.); (J.M.); (A.M.)
| | - Julie Miranda
- ISVV and Institute Pascal, University of Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France; (M.P.); (C.M.-S.); (J.M.); (A.M.)
| | - Amélie Vallet-Courbin
- Microflora-ADERA, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France; (A.V.-C.); (J.M.)
| | - Julie Maupeu
- Microflora-ADERA, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France; (A.V.-C.); (J.M.)
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institute Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| | - Joana Coulon
- Biolaffort, 11 Rue Aristide Bergès, F-33270 Floirac, France; (J.C.); (V.M.)
| | - Virginie Moine
- Biolaffort, 11 Rue Aristide Bergès, F-33270 Floirac, France; (J.C.); (V.M.)
| | - Axel Marchal
- ISVV and Institute Pascal, University of Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France; (M.P.); (C.M.-S.); (J.M.); (A.M.)
| | - Stéphanie Roi
- UMR 1083, UMR Sciences pour l’Oenologie, INRA, SupAgro, UM1, 2 Place Viala, F-34060 Cedex Montpellier, France; (S.R.); (T.D.)
| | - Thierry Doco
- UMR 1083, UMR Sciences pour l’Oenologie, INRA, SupAgro, UM1, 2 Place Viala, F-34060 Cedex Montpellier, France; (S.R.); (T.D.)
| | - Marguerite Dols-Lafargue
- ISVV and Institute Pascal, University of Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France; (M.P.); (C.M.-S.); (J.M.); (A.M.)
| |
Collapse
|
2
|
Vicente J, Vladic L, Navascués E, Brezina S, Santos A, Calderón F, Tesfaye W, Marquina D, Rauhut D, Benito S. A comparative study of Lachancea thermotolerans fermentative performance under standardized wine production conditions. Food Chem X 2024; 21:101214. [PMID: 38379805 PMCID: PMC10876678 DOI: 10.1016/j.fochx.2024.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
The study explores diverse strains of Lachancea thermotolerans in single-inoculum wine fermentation conditions using synthetic grape must. It aims to analyze the role of the species without external influences like other microorganisms or natural grape must variability. Commercial strains and selected vineyard isolates, untested together previously, are assessed. The research evaluates volatile and non-volatile chemical compounds in final wine, revealing significant strain-based variations. L. thermotolerans notably produces lactic acid and consumes malic acid, exhibiting moderate ethanol levels. The volatile profile displays strain-specific impacts, affecting higher alcohol and ester concentrations compared to S. cerevisiae. These effects vary based on the specific compounds. Using a uniform synthetic must enables direct strain comparisons, eliminating grape-related, environmental, or timing variables in the experiment, facilitating clearer insights into the behavior of L. thermotolerans in wine fermentation. The study compares for the first time all available commercial strains of L. thermotolerans.
Collapse
Affiliation(s)
- Javier Vicente
- Unit of Microbiology, Genetics, Biology Faculty, Physiology and Microbiology Department, Complutense University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain
| | - Luka Vladic
- Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180 Wien, Austria
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University (HGU), Von-Lade-Straße 1, 65366 Geisenheim, Germany
| | - Eva Navascués
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain
| | - Silvia Brezina
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University (HGU), Von-Lade-Straße 1, 65366 Geisenheim, Germany
| | - Antonio Santos
- Unit of Microbiology, Genetics, Biology Faculty, Physiology and Microbiology Department, Complutense University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain
| | - Fernando Calderón
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain
| | - Wendu Tesfaye
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain
| | - Domingo Marquina
- Unit of Microbiology, Genetics, Biology Faculty, Physiology and Microbiology Department, Complutense University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain
| | - Doris Rauhut
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University (HGU), Von-Lade-Straße 1, 65366 Geisenheim, Germany
| | - Santiago Benito
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain
| |
Collapse
|
3
|
Vicente J, Vladic L, Marquina D, Brezina S, Rauhut D, Benito S. The Influence of Chitosan on the Chemical Composition of Wines Fermented with Lachancea thermotolerans. Foods 2024; 13:987. [PMID: 38611293 PMCID: PMC11011308 DOI: 10.3390/foods13070987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Chitosan exerts a significant influence on various chemical parameters affecting the quality of wine produced using multiple strains of Lachancea thermotolerans. The impact of chitosan on these parameters varies depending on the specific strain studied. We observed that, under the influence of chitosan, the fermentation kinetics accelerated for all examined strains. The formation of lactic acid increased by 41% to 97% across the studied L. thermotolerans strains, depending on the specific strain. This effect also influenced acidity-related parameters such as total acidity, which increased by 28% to 60%, and pH, which experienced a decrease of over 0.5 units. The consumption of malic acid increased by 9% to 20% depending on the specific strain of L. thermotolerans. Nitrogen consumption also rose, as evidenced by all L. thermotolerans strains exhibiting a residual value of Primary Amino Nitrogen (PAN) of below the detection limit, and ammonia consumption increased by 90% to 100%, depending on the strain studied. However, certain parameters such as acetic acid, succinic acid, and glycerol showed contradictory results depending on the strain under investigation. In terms of volatile composition, chitosan supplementation led to increased production of i-butanol by 32% to 65%, 3-methylbutanol by 33% to 63%, and lactic acid ethyl ester by 58% to 91% across all studied strains of L. thermotolerans. Other analyzed aroma compounds exhibited varying changes depending on the specific strain of L. thermotolerans.
Collapse
Affiliation(s)
- Javier Vicente
- Unit of Microbiology, Genetics, Physiology and Microbiology Department, Biology Faculty, Complutense University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain; (J.V.); (D.M.)
| | - Luka Vladic
- Department of Food Science and Technology, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria;
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University (HGU), Von-Lade-Straße 1, 65366 Geisenheim, Germany; (S.B.); (D.R.)
| | - Domingo Marquina
- Unit of Microbiology, Genetics, Physiology and Microbiology Department, Biology Faculty, Complutense University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain; (J.V.); (D.M.)
| | - Silvia Brezina
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University (HGU), Von-Lade-Straße 1, 65366 Geisenheim, Germany; (S.B.); (D.R.)
| | - Doris Rauhut
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University (HGU), Von-Lade-Straße 1, 65366 Geisenheim, Germany; (S.B.); (D.R.)
| | - Santiago Benito
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain
| |
Collapse
|
4
|
A Genome-Wide Phenotypic Analysis of Saccharomyces cerevisiae’s Adaptive Response and Tolerance to Chitosan in Conditions Relevant for Winemaking. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In the wine industry, the use of chitosan, a non-toxic biodegradable polysaccharide with antimicrobial properties, has been gaining interest with respect to envisaging the reduction in the use of sulfur dioxide (SO2). Although the mechanisms of toxicity of chitosan against fungal cells have been addressed before, most of the studies undertaken used other sources of chitosan and/or used conditions to solubilize the polymer that were not compatible with winemaking. Herein, the effect of a commercial formulation of chitosan approved for use in winemaking over the growth of the spoilage yeast species Dekkera anomala, Saccharomycodes ludwigii, Zygosaccharomyces bailii, and Pichia anomala was assessed. At the legally allowed concentration of 0.1 g/L, chitosan inhibited the growth of all spoilage yeasts, except for the tested Pichia anomala strains. Interestingly, the highly SO2-tolerant yeasts S. ludwigii and Z. bailii were highly susceptible to chitosan. The growth of commercial Saccharomyces cerevisiae was also impacted by chitosan, in a strain-dependent manner, albeit at higher concentrations. To dissect this differential inhibitory potential and gain further insight into the interaction of chitosan over fungal cells, we explored a chemogenomic analysis to identify all of the S. cerevisiae genes conferring protection against or increasing susceptibility to the commercial formulation of chitosan. Among the genes found to confer protection against chitosan, a high proportion was found to encode proteins required for the assembly and structuring of the cell wall, enzymes involved in the synthesis of plasma membrane lipids, and components of signaling pathways that respond to damages in the plasma membrane (e.g., the Rim101 pathway). The data obtained also suggest that the fungal ribosome and the vacuolar V-ATPase could be directly targeted by chitosan, since the deletion of genes encoding proteins required for the structure and function of these organelles was found to increase tolerance to chitosan. We also demonstrated, for the first time, that the deletion of ITR1, AGP2 and FPS1, encoding plasma membrane transporters, prominently increased the tolerance of S. cerevisiae to chitosan, suggesting that they can serve as carriers for chitosan. Besides providing new insights into the mode of action of chitosan against wine yeasts, this study adds relevant information for its rational use as a substitute/complementary preservative to SO2.
Collapse
|
5
|
Combined Use of Schizosaccharomyces pombe and a Lachancea thermotolerans Strain with a High Malic Acid Consumption Ability for Wine Production. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The development of new fermentative strategies exploiting the potential of different wine-related species is of great interest for new winemaking conditions and consumer preferences. One of the most promising non-conventional approaches to wine fermentation is the combined use of deacidifying and acidifying yeasts. Lachancea thermotolerans shows several other properties besides lactic acid production; among them, high malic acid consumption is of great interest in the production of red wines for avoiding undesirable refermentations once bottled. The combination of a L. thermotolerans strain that is able to consume malic acid with a Schizosaccharomyces pombe strain helps to ensure malic acid elimination during alcoholic fermentation while increasing the final acidity by lactic acid production. To properly assess the influence of this alternative strategy, we developed combined fermentations between specific strains of L. thermotolerans and S. pombe under sequential inoculation. Both species showed a great performance under the studied conditions, influencing not only the acidity but also the aromatic compound profiles of the resulting wines. The new proposed biotechnological strategy reduced the final concentrations of ethanol, malic acid and succinic acid, while it increased the concentrations of lactic acid and esters.
Collapse
|
6
|
Chen ES. Application of the fission yeast Schizosaccharomyces pombe in human nutrition. FEMS Yeast Res 2023; 23:6961766. [PMID: 36574952 DOI: 10.1093/femsyr/foac064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/03/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Fission yeast Schizosaccharomyces pombe (S. pombe) is renowned as a powerful genetic model for deciphering cellular and molecular biological phenomena, including cell division, chromosomal events, stress responses, and human carcinogenesis. Traditionally, Africans use S. pombe to ferment the beer called 'Pombe', which continues to be consumed in many parts of Africa. Although not as widely utilized as the baker's yeast Saccharomyces cerevisiae, S. pombe has secured several niches in the food industry for human nutrition because of its unique metabolism. This review will explore three specific facets of human nutrition where S. pombe has made a significant impact: namely, in wine fermentation, animal husbandry and neutraceutical supplementation coenzyme Q10 production. Discussions focus on the current gaps in these areas, and the potential research advances useful for addressing future challenges. Overall, gaining a better understanding of S. pombe metabolism will strengthen production in these areas and potentially spearhead novel future applications.
Collapse
Affiliation(s)
- Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore.,National University Health System (NUHS), Singapore 119228, Singapore.,NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
7
|
Assessment of chitosan antimicrobial effect on wine microbes. Int J Food Microbiol 2022; 381:109907. [DOI: 10.1016/j.ijfoodmicro.2022.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
|
8
|
Bullé Rêgo ES, Santos DL, Hernández-Macedo ML, Padilha FF, López JA. Methods for the prevention and control of microbial spoilage and undesirable compounds in wine manufacturing. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Chemical Methods for Microbiological Control of Winemaking: An Overview of Current and Future Applications. BEVERAGES 2022. [DOI: 10.3390/beverages8030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Preservation technologies for winemaking have relied mainly on the addition of sulfur dioxide (SO2), in consequence of the large spectrum of action of this compound, linked to the control of undesirable microorganisms and the prevention of oxidative phenomena. However, its potential negative effects on consumer health have addressed the interest of the international research on alternative treatments to substitute or minimize the SO2 content in grape must and wine. This review is aimed at analyzing chemical methods, both traditional and innovative, useful for the microbiological stabilization of wine. After a preliminary description of the antimicrobial and technological properties of SO2, the additive traditionally used during wine production, the effects of the addition (in must and wine) of other compounds officially permitted in winemaking, such as sorbic acid, dimethyl dicarbonate (DMDC), lysozyme and chitosan, are discussed and evaluated. Furthermore, other substances showing antimicrobial properties, for which the use for wine microbiological stabilization is not yet permitted in EU, are investigated. Even if these treatments exhibit a good efficacy, a single compound able to completely replace SO2 is not currently available, but a combination of different procedures might be useful to reduce the sulfite content in wine. Among the strategies proposed, particular interest is directed towards the use of insect-based chitosan as a reliable alternative to SO2, mainly due to its low environmental impact. The production of wines containing low sulfite levels by using pro-environmental practices can meet both the consumers’ expectations, who are even more interested in the healthy traits of foods, and wine-producers’ needs, who are interested in the use of sustainable practices to promote the profile of their brand.
Collapse
|
10
|
The Use of Hanseniaspora occidentalis in a Sequential Must Inoculation to Reduce the Malic Acid Content of Wine. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this study, the impact of the apiculate yeast Hanseniaspora occidentalis as a co-partner with Saccharomyces cerevisiae was investigated in a sequential-type mixed-culture fermentation of Muscaris grape must. As with other fermentation trials using Hanseniaspora strains, a significant increase in ethyl acetate was observed, but most intriguing was the almost complete abolition of malic acid (from 2.0 g/L to 0.1 g/L) in the wine. Compared to the pure S. cerevisiae inoculum, there was also a marked increase in the concentrations of the other acetate esters. Modulation of some of the varietal elements, such as rose oxide, was also observed. This work shows the promising use of H. occidentalis in a mixed-culture must fermentation, especially in the acid modulation of fruit juice matrices.
Collapse
|
11
|
Vicente J, Baran Y, Navascués E, Santos A, Calderón F, Marquina D, Rauhut D, Benito S. Biological management of acidity in wine industry: A review. Int J Food Microbiol 2022; 375:109726. [DOI: 10.1016/j.ijfoodmicro.2022.109726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
|
12
|
Scansani S, van Wyk N, Nader KB, Beisert B, Brezina S, Fritsch S, Semmler H, Pasch L, Pretorius IS, von Wallbrunn C, Schnell S, Rauhut D. The film-forming Pichia spp. in a winemaker's toolbox: A simple isolation procedure and their performance in a mixed-culture fermentation of Vitis vinifera L. cv. Gewürztraminer must. Int J Food Microbiol 2022; 365:109549. [DOI: 10.1016/j.ijfoodmicro.2022.109549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 01/21/2023]
|
13
|
Microbial stabilisation of white wine by filtration through silica microparticles functionalised with natural antimicrobials. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Impact of Chitosan-Genipin Films on Volatile Profile of Wine along Storage. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chitosan-genipin films have been proposed for preservation of white wine, maintaining their varietal key odorants and organoleptic characteristics of sulfur dioxide treated wines. Nevertheless, these wines showed aroma notes that slightly distinguish them. It is possible that during the contact of films with wine for at least 2 months, after fermentation and prior to bottling, interactions or chemical reactions are promoted. In this work, wine model solutions with volatile compounds in contact with chitosan-genipin films were performed to evaluate their evolution along time. To complement these analyses, the volatile compounds of white and red wines kept in contact with chitosan-genipin films during 2 and 8 months were also studied. The results obtained allowed us to conclude that the contact of chitosan-genipin films with both white and red wines tend to retain long carbon chain volatile compounds, such as ethyl hexanoate and octan-3-one. It also promoted the formation of Maillard reaction products, such as furfural by dehydration of pentoses and Strecker aldehydes, such as 3-methylbutanal and phenylacetaldehyde, by degradation of amino acids. This study reveals that the use of chitosan-genipin films for wine preservation is also able to promote the formation of compounds that can modulate the wines aroma, maintaining the varietal notes.
Collapse
|
15
|
The Combined Use of Lachancea thermotolerans and Lactiplantibacillus plantarum (former Lactobacillus plantarum) in Wine Technology. Foods 2021; 10:foods10061356. [PMID: 34199225 PMCID: PMC8232010 DOI: 10.3390/foods10061356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/30/2022] Open
Abstract
Most commercialized red wines are produced through alcoholic fermentation performed by yeasts of the Saccharomyces genus, and a second fermentation performed by lactic bacteria of the Oenococus oeni species once the first is completely finished. However, the classical process can suffer complications, of which the risks can increase in grape juices with high contents of sugar and pH. Due to climate change, these situations are becoming more common in the winemaking industry. The main risks in those scenarios are alcoholic-fermentation stops or sluggish and undesirable bacteria development while alcoholic fermentation is not finished yet and wine still contains residual sugars. The study propose a novel alternative that offers a solution or reduces the risk of those scenarios while increasing acidity, which is another serious problem of warm viticulture regions. The alternative consists of the combined use of Lachancea thermotolerans to reduce the pH of musts that suffer from a lack of acidity, Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) to achieve malic acid stability during the first stages of alcoholic fermentation, and Saccharomyces bayanus to complete the alcoholic fermentation in difficult wines of high potential alcohol degree of over 15% (v/v). The new proposed biotechnology produced wines with higher final concentrations in lactic acid, glycerol, color intensity, ethyl lactate and 2-phenyl ethyl acetate in 2.39 g/L, 0.52 g/L, 21%, 48% and 37% respectively than the classical methodology where Saccharomyces genus performs alcoholic fermentation and later Oenococus oeni performs malolactic fermentation. Additionally, the new alternative produced wines with lower concentration in ethanol, pH, acetic acid, ethyl acetate, diacetyl and 1-propanol in 0.37% (v/v), 0.26, 0.08 g/L, 22%, 69% and 28% respectively than the classic method.
Collapse
|