1
|
Kim JS, Kim TY, Lim MC, Khan MSI. Campylobacter control strategies at postharvest level. Food Sci Biotechnol 2024; 33:2919-2936. [PMID: 39220305 PMCID: PMC11364751 DOI: 10.1007/s10068-024-01644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Campylobacter is highly associated with poultry and frequently causes foodborne illness worldwide. Thus, effective control measures are necessary to reduce or prevent human infections. In this review, Campylobacter control methods applicable at postharvest level for poultry meat during production, storage, and preparation are discussed. Drying and temperature are discussed as general strategies. Traditional strategies such as steaming, freezing, sanitizing, organic acid treatment, and ultraviolet light treatment are also discussed. Recent advances in nanotechnology using antibacterial nanoparticles and natural antimicrobial agents from plants and food byproducts are also discussed. Although advances have been made and there are various methods for preventing Campylobacter contamination, it is still challenging to prevent Campylobacter contamination in raw poultry meats with current methods. In addition, some studies have shown that large strain-to-strain variation in susceptibility to these methods exists. Therefore, more effective methods or approaches need to be developed to substantially reduce human infections caused by Campylobacter.
Collapse
Affiliation(s)
- Joo-Sung Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | - Tai-Yong Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Min-Cheol Lim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | | |
Collapse
|
2
|
Altissimi C, Roila R, Primavilla S, Branciari R, Valiani A, Ranucci D. Surface carcass treatment with olive mill wastewater polyphenolic extract against Salmonella Enteritidis and Listeria monocytogenes: in vitro and in situ assessment. Ital J Food Saf 2024; 13:12403. [PMID: 39301145 PMCID: PMC11411404 DOI: 10.4081/ijfs.2024.12403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/18/2023] [Indexed: 09/22/2024] Open
Abstract
In recent years, there has been an increased interest in substances that could inhibit or reduce microbial growth in food products. Olive oil industry by-products, due to bioactive compounds with potential antimicrobial properties such as polyphenols, could be used in carcass treatment to enhance hygienic and quality traits. The assessment of the antimicrobial efficacy of bioactive molecules against pathogens should be determined with in vitro and in situ models since it is not possible to evaluate it directly on carcasses at the slaughterhouse. This study aimed to evaluate the effect of an olive mill wastewater polyphenolic extract against Salmonella Enteritidis and Listeria monocytogenes, simulating carcass surfaces using bovine dermis samples that were experimentally contaminated with the selected pathogens. The minimum inhibitory concentration and minimum bactericidal concentration were first determined for S. Enteritidis and L. monocytogenes. In situ, bactericidal activity assessment was performed using 20 cm2 derma samples contaminated with 5 Log CFU/20 cm2 of S. Enteritidis and L. monocytogenes in separate trials. Treatment with the polyphenolic extract was not effective for either microorganism. In order to establish the bacteriostatic activity of the polyphenolic extract, suspensions of about 2 Log CFU/20 cm2 of S. Enteritidis and L. monocytogenes were used. Polyphenolic extract treatment was not effective against Salmonella, while for Listeria it allowed microbial growth to delay (around 1 Log CFU/cm2 difference at 3, 7, and 14 days between treated and control groups). Further investigations are needed to evaluate the application of polyphenolic compounds on carcass surfaces and their effects on sensory traits.
Collapse
Affiliation(s)
| | - Rossana Roila
- Department of Veterinary Medicine, University of Perugia
| | - Sara Primavilla
- Experimental Zooprophylactic Institute of Umbria and Marche "Togo Rosati", Perugia, Italy
| | | | - Andrea Valiani
- Experimental Zooprophylactic Institute of Umbria and Marche "Togo Rosati", Perugia, Italy
| | - David Ranucci
- Department of Veterinary Medicine, University of Perugia
| |
Collapse
|
3
|
Stoakes E, Savva GM, Coates R, Tejera N, Poolman MG, Grant AJ, Wain J, Singh D. Substrate Utilisation and Energy Metabolism in Non-Growing Campylobacter jejuni M1cam. Microorganisms 2022; 10:1355. [PMID: 35889074 PMCID: PMC9318392 DOI: 10.3390/microorganisms10071355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Campylobacter jejuni, the major cause of bacterial foodborne illness, is also a fastidious organism that requires strict growth requirements in the laboratory. Our aim was to study substrate utilisation and energy metabolism in non-growing C. jejuni to investigate the ability of these bacteria to survive so effectively in the food chain. We integrated phenotypic microarrays and genome-scale metabolic modelling (GSM) to investigate the survival of C. jejuni on 95 substrates. We further investigated the underlying metabolic re-adjustment associated with varying energy demands on each substrate. We identified amino acids, organic acids and H2, as single substrates supporting survival without growth. We identified several different mechanisms, which were used alone or in combination, for ATP production: substrate-level phosphorylation via acetate kinase, the TCA cycle, and oxidative phosphorylation via the electron transport chain that utilised alternative electron donors and acceptors. The benefit of ATP production through each of these mechanisms was associated with the cost of enzyme investment, nutrient availability and/or O2 utilisation. C. jejuni can utilise a wide range of substrates as energy sources, including organic acids commonly used for marination or preservation of ingredients, which might contribute to the success of their survival in changing environments.
Collapse
Affiliation(s)
- Emily Stoakes
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (E.S.); (R.C.); (A.J.G.)
| | - George M. Savva
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (G.M.S.); (N.T.)
| | - Ruby Coates
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (E.S.); (R.C.); (A.J.G.)
| | - Noemi Tejera
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (G.M.S.); (N.T.)
| | - Mark G. Poolman
- Cell System Modelling Group, Oxford Brookes University, Oxford OX3 0BP, UK;
| | - Andrew J. Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (E.S.); (R.C.); (A.J.G.)
| | - John Wain
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (G.M.S.); (N.T.)
| | - Dipali Singh
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (G.M.S.); (N.T.)
| |
Collapse
|
4
|
Gichure JN, Kamau Njage PM, Wambui JM, Dykes GA, Buys EM, Coorey R. Systematic-review and meta-analysis on effect of decontamination interventions on prevalence and concentration of Campylobacter spp. during primary processing of broiler chickens. Food Microbiol 2021; 102:103923. [PMID: 34809949 DOI: 10.1016/j.fm.2021.103923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Scientific advances in pathogen decontamination offer great potential to reduce Campylobacter spp. during primary processing. The aim of this study was to collate data from eligible studies using systematic review, meta-analysis followed by meta-regression. Random effect meta-analysis revealed heterogenous (τ2 = 0.6, I2 = 98 %) pooled reduction in Campylobacter concentration of 0.6 log10 CFU/carcass and a decrease in relative risk of Campylobacter spp. prevalence in broiler carcasses by 57.2 %. Decontamination interventions during Inside-Outside-Carcass-Wash were most effective on concentration (0.8 log10 CFU/carcass) while those during evisceration were most effective on prevalence (78.0 % decrease in relative risk). Physical decontamination was more effective on Campylobacter prevalence (68.7 % decrease in relative risk) compared chemical treatment (30.3 %). Application through immersion was superior on Campylobacter concentration (0.9 log10 CFU/carcass odds reduction) to spraying (0.5 log10 CFU/carcass odds reduction). Publication bias and small study effect were observed in trials on Campylobacter prevalence but not for concentration. The meta-regression revealed four and seven potential modifier variables for concentration and prevalence respectively. This meta-analysis provides an overview of the expected magnitude in Campylobacter spp. concentration and prevalence with application of decontamination interventions on broiler carcasses along the slaughter process and forms a basis of quantitative microbial risk assessment and derivation of intervention measures. Even though modest microbial concentration reduction is reported there was a large decrease in contamination prevalence during processing interventions.
Collapse
Affiliation(s)
- Josphat N Gichure
- Department of Food Science, Nutrition and Technology, South Eastern Kenya University, P.O. Box 170-90200, Kitui, Kenya.
| | - Patrick Murigu Kamau Njage
- Division for Epidemiology and Microbial Genomics, National Food Institute, Technical University of Denmark, Søltofts Plads, Building 221, Denmark
| | - Joseph M Wambui
- Institute for Food Safety and Hygiene, University of Zurich, Winterthurerstrasse 272, 8057, Zurich, Switzerland
| | - Gary A Dykes
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia
| | - Elna M Buys
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Ranil Coorey
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia
| |
Collapse
|
5
|
Wrońska N, Katir N, Miłowska K, Hammi N, Nowak M, Kędzierska M, Anouar A, Zawadzka K, Bryszewska M, El Kadib A, Lisowska K. Antimicrobial Effect of Chitosan Films on Food Spoilage Bacteria. Int J Mol Sci 2021; 22:5839. [PMID: 34072512 PMCID: PMC8198402 DOI: 10.3390/ijms22115839] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Synthetic materials commonly used in the packaging industry generate a considerable amount of waste each year. Chitosan is a promising feedstock for the production of functional biomaterials. From a biological point of view, chitosan is very attractive for food packaging. The purposes of this study were to evaluate the antibacterial activity of a set of chitosan-metal oxide films and different chitosan-modified graphene (oxide) films against two foodborne pathogens: Campylobacter jejuni ATCC 33560 and Listeria monocytogenes 19115. Moreover, we wanted to check whether the incorporation of antimicrobial constituents such as TiO2, ZnO, Fe2O3, Ag, and graphene oxide (GO) into the polymer matrices can improve the antibacterial properties of these nanocomposite films. Finally, this research helps elucidate the interactions of these materials with eukaryotic cells. All chitosan-metal oxide films and chitosan-modified graphene (oxide) films displayed improved antibacterial (C. jejuni ATCC 33560 and L. monocytogenes 19115) properties compared to native chitosan films. The CS-ZnO films had excellent antibacterial activity towards L. monocytogenes (90% growth inhibition). Moreover, graphene-based chitosan films caused high inhibition of both tested strains. Chitosan films with graphene (GO, GOP, GOP-HMDS, rGO, GO-HMDS, rGOP), titanium dioxide (CS-TiO2 20:1a, CS-TiO2 20:1b, CS-TiO2 2:1, CS-TiO2 1:1a, CS-TiO2 1:1b) and zinc oxide (CS-ZnO 20:1a, CS-ZnO 20:1b) may be considered as a safe, non-cytotoxic packaging materials in the future.
Collapse
Affiliation(s)
- Natalia Wrońska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland; (M.N.); (K.Z.)
| | - Nadia Katir
- Euromed Research Center, Engineering Division (Center Is Part of the Division), Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fès 30070, Morocco; (N.K.); (N.H.); (A.A.); (A.E.K.)
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (K.M.); (M.K.); (M.B.)
| | - Nisrine Hammi
- Euromed Research Center, Engineering Division (Center Is Part of the Division), Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fès 30070, Morocco; (N.K.); (N.H.); (A.A.); (A.E.K.)
| | - Marta Nowak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland; (M.N.); (K.Z.)
| | - Marta Kędzierska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (K.M.); (M.K.); (M.B.)
| | - Aicha Anouar
- Euromed Research Center, Engineering Division (Center Is Part of the Division), Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fès 30070, Morocco; (N.K.); (N.H.); (A.A.); (A.E.K.)
| | - Katarzyna Zawadzka
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland; (M.N.); (K.Z.)
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (K.M.); (M.K.); (M.B.)
| | - Abdelkrim El Kadib
- Euromed Research Center, Engineering Division (Center Is Part of the Division), Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fès 30070, Morocco; (N.K.); (N.H.); (A.A.); (A.E.K.)
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland; (M.N.); (K.Z.)
| |
Collapse
|