1
|
Sumerta IN, Ruan X, Howell K. The forgotten wine: Understanding palm wine fermentation and composition. Int J Food Microbiol 2025; 429:111022. [PMID: 39689568 DOI: 10.1016/j.ijfoodmicro.2024.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Palm wine is an alcoholic beverage that has existed for centuries and has important economic and socio-culture values in many tropical and sub-tropical countries. Lesser known than other types of wines, palm wine is made by spontaneous fermentation of palm sap by naturally occurring microbial communities. The palm sap ecosystem has unique microbial composition and diversity, which determines the composition of the eventual wine and is likely affected by geographical distinctiveness. While these features are well understood in grape and rice wine, these features have not been understood in palm wine. Here, we gather information of microbial communities and metabolite profiles from published studies, covering a wide range of methodologies and regions to better understand the causal links between the principal microbial species and major metabolites of palm wine. We assessed palm wine quality across production regions and local practices to provide general characteristics of palm wine and identify specific regional information. These will provide better understandings to the function of microbial communities and metabolite diversity, the contribution of regional variations and to ensure product quality in this unique, yet overlooked, fermented beverage.
Collapse
Affiliation(s)
- I Nyoman Sumerta
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Victoria 3010, Australia; National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Xinwei Ruan
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Victoria 3010, Australia
| | - Kate Howell
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
2
|
Bashar MA, Hossain MA, Kavey MRH, Shazib R, Islam MS, Ansari SA, Rahman MH. Network Pharmacology and In silico Elucidation of Phytochemicals Extracted from Ajwa Dates ( Phoenix dactylifera L.) to Inhibit Akt and PI3K Causing Triple Negative Breast Cancer (TNBC). Curr Pharm Des 2025; 31:774-796. [PMID: 39698883 DOI: 10.2174/0113816128348876241017101729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND About 10-15% of all breast cancers comprise triple-negative breast cancer (TNBC), defined as cancer cells that lack ER, PR, and HER2 protein receptors. Due to the absence of these receptors, treating TNBC using conventional chemotherapy is challenging and, therefore, requires the discovery of novel chemotherapeutic agents derived from natural sources. OBJECTIVE The current work was intended to study the potential phytochemicals of Ajwa dates (Phoenix dactylifera L.) with the predicted potential targets (namely, Akt and PI3K) to determine possible TNBC inhibitors. METHODS We harnessed network pharmacology, molecular docking, drug-likeness studies, Molecular Dynamics (MD) simulation, and binding free energy (MM-GBSA) calculation to get phytochemicals with potential effects against TNBC. Firstly, molecular docking was performed on 125 phytochemicals against the Akt and PI3K proteins utilizing PyRx. Then, the phytochemicals with the highest binding affinity (≤ -8.1 kcal/mol) were examined for in silico drug-likeness and toxicity profiles. Finally, phytochemicals with optimal druglikeness and toxicity profiles were studied by Molecular Dynamics (MD) simulation and binding free energy (MM-GBSA) to identify compounds that can form stable complexes. RESULTS The results of the network pharmacology revealed that the Akt and PI3K proteins are potential targets of TNBC for the phytochemicals of Phoenix dactylifera L. used in this study. The outcomes of molecular docking displayed that among 125 phytochemicals, 42 of them (with a binding affinity ≤ -8.1 kcal/mol) have potentially inhibiting effects on both proteins PI3K and Akt expressed in TNBC. Then, the results of in silico drug-likeness identified seven phytochemicals with optimal pharmacokinetic profiles. Furthermore, toxicity studies showed that three phytochemicals (namely, Chrysoeriol, Daidzein, and Glycitein) did not cause any toxicities. Finally, the Molecular Dynamics (MD) simulation studies and binding free energy (MM-GBSA) verified that Daidzein stayed within the binding cavities of both proteins (Akt and PI3K) by establishing a stable protein-ligand complex during simulation. CONCLUSION Taken together, the current work emphasizes the potential effects of Daidzein from Phoenix dactylifera L. against TNBC, and it can be further studied to establish it as a standard chemotherapy for TNBC.
Collapse
Affiliation(s)
- Md Abul Bashar
- Department of Pharmacy, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Md Arju Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
- Department of Microbiology, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Md Reduanul Haque Kavey
- Department of Pharmacy, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Rayhanuzzaman Shazib
- Department of Pharmacy, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Md Shofiqul Islam
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, 75 Pigdons Rd, Warunponds, Victoria 3216, Australia
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O Box 2457, Riyadh 11451, Saudi Arabia
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia 7003, Bangladesh
- Center for Advanced Bioinformatics and Artificial Intelligence Research, Islamic University, Kushtia 7003, Bangladesh
| |
Collapse
|
3
|
Ansari P, Khan JT, Chowdhury S, Reberio AD, Kumar S, Seidel V, Abdel-Wahab YHA, Flatt PR. Plant-Based Diets and Phytochemicals in the Management of Diabetes Mellitus and Prevention of Its Complications: A Review. Nutrients 2024; 16:3709. [PMID: 39519546 PMCID: PMC11547802 DOI: 10.3390/nu16213709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is currently regarded as a global public health crisis for which lifelong treatment with conventional drugs presents limitations in terms of side effects, accessibility, and cost. Type 2 diabetes (T2DM), usually associated with obesity, is characterized by elevated blood glucose levels, hyperlipidemia, chronic inflammation, impaired β-cell function, and insulin resistance. If left untreated or when poorly controlled, DM increases the risk of vascular complications such as hypertension, nephropathy, neuropathy, and retinopathy, which can be severely debilitating or life-threatening. Plant-based foods represent a promising natural approach for the management of T2DM due to the vast array of phytochemicals they contain. Numerous epidemiological studies have highlighted the importance of a diet rich in plant-based foods (vegetables, fruits, spices, and condiments) in the prevention and management of DM. Unlike conventional medications, such natural products are widely accessible, affordable, and generally free from adverse effects. Integrating plant-derived foods into the daily diet not only helps control the hyperglycemia observed in DM but also supports weight management in obese individuals and has broad health benefits. In this review, we provide an overview of the pathogenesis and current therapeutic management of DM, with a particular focus on the promising potential of plant-based foods.
Collapse
Affiliation(s)
- Prawej Ansari
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Joyeeta T. Khan
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Suraiya Chowdhury
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Alexa D. Reberio
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Sandeep Kumar
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Yasser H. A. Abdel-Wahab
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Peter R. Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| |
Collapse
|
4
|
Nawaz L, Grieve DJ, Muzaffar H, Iftikhar A, Anwar H. Methanolic Extract of Phoenix Dactylifera Confers Protection against Experimental Diabetic Cardiomyopathy through Modulation of Glucolipid Metabolism and Cardiac Remodeling. Cells 2024; 13:1196. [PMID: 39056777 PMCID: PMC11274523 DOI: 10.3390/cells13141196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The incidence of cardiovascular disorders is continuously rising, and there are no effective drugs to treat diabetes-associated heart failure. Thus, there is an urgent need to explore alternate approaches, including natural plant extracts, which have been successfully exploited for therapeutic purposes. The current study aimed to explore the cardioprotective potential of Phoenix dactylifera (PD) extract in experimental diabetic cardiomyopathy (DCM). Following in vitro phytochemical analyses, Wistar albino rats (N = 16, male; age 2-3 weeks) were fed with a high-fat or standard diet prior to injection of streptozotocin (35 mg/kg i.p.) after 2 months and separation into the following four treatment groups: healthy control, DCM control, DCM metformin (200 mg/kg/day, as the reference control), and DCM PD treatment (5 mg/kg/day). After 25 days, glucolipid and myocardial blood and serum markers were assessed along with histopathology and gene expression of both heart and pancreatic tissues. The PD treatment improved glucolipid balance (FBG 110 ± 5.5 mg/dL; insulin 17 ± 3.4 ng/mL; total cholesterol 75 ± 8.5 mg/dL) and oxidative stress (TOS 50 ± 7.8 H2O2equiv./L) in the DCM rats, which was associated with preserved structural integrity of both the pancreas and heart compared to the DCM control (FBG 301 ± 10 mg/dL; insulin 27 ± 3.4 ng/mL; total cholesterol 126 ± 10 mg/dL; TOS 165 ± 12 H2O2equiv./L). Gene expression analyses revealed that PD treatment upregulated the expression of insulin signaling genes in pancreatic tissue (INS-I 1.69 ± 0.02; INS-II 1.3 ± 0.02) and downregulated profibrotic gene expression in ventricular tissue (TGF-β 1.49 ± 0.04) compared to the DCM control (INS-I 0.6 ± 0.02; INS-II 0.49 ± 0.03; TGF-β 5.7 ± 0.34). Taken together, these data indicate that Phoenix dactylifera may offer cardioprotection in DCM by regulating glucolipid balance and metabolic signaling.
Collapse
Affiliation(s)
- Laaraib Nawaz
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| | - David J. Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK;
| | - Humaira Muzaffar
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| | - Arslan Iftikhar
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| | - Haseeb Anwar
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| |
Collapse
|
5
|
Mirghani HO. Effect of dates on blood glucose and lipid profile among patients with type 2 diabetes. World J Diabetes 2024; 15:1079-1085. [PMID: 38983813 PMCID: PMC11229973 DOI: 10.4239/wjd.v15.i6.1079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/03/2024] [Accepted: 04/03/2024] [Indexed: 06/11/2024] Open
Abstract
Poor fruit and vegetable consumption is one of the 10 major risk factors for mortality. There is a misconception regarding the consumption of dates among patients with diabetes. This manuscript assessed the effects of date consumption on fasting and postprandial blood glucose, glycated hemoglobin, total cholesterol, triglycerides, low-density lipoproteins, high-density lipoproteins, and microbial markers. Four literature databases were searched for relevant articles. Of the 595 studies retrieved, 24 assessed the effects of dates on glycemic control and lipids. Overall, the evidence suggests that dates have a lowering effect on blood glucose. Dates reduce total cholesterol and triglyceride levels and increase high-density lipoprotein levels. Dates also promote the abundance of beneficial gut microbiota. Therefore, patients with diabetes and dyslipidemia can consume dates to reduce their blood glucose, cholesterol, and triglycerides.
Collapse
Affiliation(s)
- Hyder Osman Mirghani
- Internal Medicine, University of Tabuk, Saudi Arabia, Tabuk 51941, Tabuk, Saudi Arabia
| |
Collapse
|
6
|
Gomaa HH, Amin DY, Ahmed AR, Ismail NA, El Dougdoug KA, Abd-Elhalim BT. Antimicrobial, antibiofilm, and antiviral investigations using egyptian phoenix dactylifera L. pits extract. AMB Express 2024; 14:44. [PMID: 38722390 PMCID: PMC11082101 DOI: 10.1186/s13568-024-01695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Phoenix dactylifera L. and its wastes are known to be high in nutrients that are beneficial to human health. The study aimed to evaluate the antimicrobial, antibiofilm, and antiviral properties of Phoenix dactylifera L. pits extract (PDPE) in vitro. Gas chromatography-mass spectrometry (GC-MS) analysis indicated phenol, 2,5-bis(1,1-dimethyl ethyl), tetradecanoic acid, octaethylene glycol monododecyl ether, á-D-glucopyranosiduronic acid, and heptaethylene glycol monododecyl ether existence. The PDPE influenced pathogenic microorganisms, with inhibition zone diameters (IZDs) ranging from 10.0 to 35.0 mm. Staphylococcus aureus ATCC 5638 had the highest IZD, while Salmonella typhi DSM 17058 and Shigella sonnei DSM 5570 had the lowest. The antifungal effect observed only in spore failure or conidia formation. PDPE showed a 100% antibacterial spectrum against bacteria, with MIC values between 250 and 1000 µg/ml. MIC was only indicated with S. aureus of 500 µg/ml. MBC values ranged from 500 to 1000 g/ml, with MBC values of 500 g/ml for B. cereus, E. faecalis, S. typhi, and S. sonnei. The activity was 66.7% at 500 µg/ml, further concentrations of 125-250 g/ml had no antibacterial effect. PDPE biofilm inhibition % had the highest percentage of inhibition (98.59%) with S. aureus, B. cereus (94.12%), and E. coli (74.46%). With 50% (CC50) viral activity, the highest non-toxic PDPE dose was found to be at 123.0 µg/ml.
Collapse
Affiliation(s)
- Hanaa H Gomaa
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Dalia Y Amin
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Alaaeldin R Ahmed
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Nader A Ismail
- Department of Dermatology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Khaled A El Dougdoug
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, PO Box 68-Hadayek Shoubra, Shubra El-Khaimah, Cairo, 11241, Egypt
| | - Basma T Abd-Elhalim
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, PO Box 68-Hadayek Shoubra, Shubra El-Khaimah, Cairo, 11241, Egypt.
| |
Collapse
|
7
|
Camilleri E, Blundell R, Cuschieri A. Deciphering the anti-constipation characteristics of palm dates ( Phoenix dactylifera): a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2153865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Emma Camilleri
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, Malta
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Andrea Cuschieri
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, Malta
| |
Collapse
|
8
|
Abbassi R, Pontes MC, Dhibi S, Duarte Filho LAMS, Othmani S, Bouzenna H, Almeida JRGS, Hfaiedh N. Antioxidant properties of date seeds extract (Phoenix dactylifera L.) in alloxan induced damage in rats. BRAZ J BIOL 2023; 83:e274405. [PMID: 38126632 DOI: 10.1590/1519-6984.274405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/05/2023] [Indexed: 12/23/2023] Open
Abstract
The study was conducted to examine the antioxidant activity and evaluate the protective effects of the date seeds powder kentichi against alloxan-induced damage in the liver, kidney, and pancreas in diabetic's rats. Group 1: control group, that did not receive any treatment, Group 2: alloxan was injected intraperitoneally (120 mg/kg body weight) for two days (Diab), Group 3: treated only by date seeds powder added in the diet (300 g/kg) for 6 weeks (DSPK), Group 4: alloxan-diabetic rats treated with date seeds powder (300 g/kg) (DSPK + Diab). Estimations of biochemical parameters in blood were determined. TBARS, SOD, CAT, and GPx activities were determined. A histopathological study was done by immersing pieces of both organs in a fixative solution followed by paraffin hematoxylin-eosin staining. In addition, the antioxidant activities of DSPK were evaluated by DPPH radical scavenging activity, reducing power, and ABTS free radical scavenging. The results revealed that date seeds significantly decreased serum levels of glucose, cholesterol, triglycerides, urea, creatinine, T-protein, ALP, D-bili and T-bili levels. In addition, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities that had been reduced in liver, kidney, and pancreas of the treated group were restored by DSPK treatments and, therefore, the lipid peroxidation level was reduced in the liver, kidney and pancreas tissue compared to the control group. Additionally, the histological structure in these organs was restored after treatment with date seeds powder.
Collapse
Affiliation(s)
- R Abbassi
- University of Gafsa, Faculty of Sciences of Gafsa, Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems - LBBEEO, Gafsa, Tunisia
| | - M C Pontes
- Universidade Federal do Vale do São Francisco, Núcleo de Estudos e Pesquisas de Plantas Medicinais - NEPLAME, Petrolina, PE, Brasil
| | - S Dhibi
- University of Gafsa, Faculty of Sciences of Gafsa, Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems - LBBEEO, Gafsa, Tunisia
| | - L A M S Duarte Filho
- Universidade Federal do Vale do São Francisco, Núcleo de Estudos e Pesquisas de Plantas Medicinais - NEPLAME, Petrolina, PE, Brasil
| | - S Othmani
- University of Gafsa, Faculty of Sciences of Gafsa, Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems - LBBEEO, Gafsa, Tunisia
| | - H Bouzenna
- University of Gafsa, Faculty of Sciences of Gafsa, Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems - LBBEEO, Gafsa, Tunisia
| | - J R G S Almeida
- Universidade Federal do Vale do São Francisco, Núcleo de Estudos e Pesquisas de Plantas Medicinais - NEPLAME, Petrolina, PE, Brasil
| | - N Hfaiedh
- University of Gafsa, Faculty of Sciences of Gafsa, Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems - LBBEEO, Gafsa, Tunisia
| |
Collapse
|
9
|
Abdelbaky AS, Tammam MA, Ali MY, Sharaky M, Selim K, Semida WM, Abd El-Mageed TA, Ramadan MF, Oraby HF, Diab YM. Antioxidant and Anticancer Assessment and Phytochemical Investigation of Three Varieties of Date Fruits. Metabolites 2023; 13:816. [PMID: 37512523 PMCID: PMC10386203 DOI: 10.3390/metabo13070816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Date palm (Phoenix dactylifera L.) fruits contain high concentrations of phenolic compounds, particularly flavonoids and other micronutrients, which impact human health due to their potent antioxidant, anti-inflammatory, and anticancer characteristics. In the present study, the effect of ethyl acetate, hydroethanol, hydromethanol, and aqueous extract from three date palm varieties (i.e., Ajwa, Siwi, and Sukkari) on phytochemical profiles and antioxidant and anticancer activities was investigated. Fruit extracts were screened for their antioxidant activity using the DPPH· method. Phenolic constituents were quantified and identified using HPLC-DAD. Extracts (ethyl acetate, hydroethanol, and hydromethanol) were assessed for cytotoxicity on nine human cancer cell lines, i.e., MG-63, HCT116, MCF7, MDA-MB-231, HEPG2, HUH7, A549, H460, and HFB4, using the sulphorhodamine-B (SRB) assay. Results showed that the ethyl acetate extract of the Sukkari fruits has the greatest antioxidant potential with an IC50 value of 132.4 ± 0.3 μg·mL-1, while the aqueous extract of Ajwa date fruits exhibited the lowest antioxidant effect with an IC50 value of 867.1 ± 0.3 μg·mL-1. The extracts exhibited potent to moderate anticancer activities against the investigated cancer cell line in a source-dependent manner. Methanol extract of Siwi fruits exhibited the most potent anticancer activity (IC50 = 99 ± 1.6 µg·mL-1), followed by the same extract of Sukkari fruits with an IC50 value of 119 ± 3.5 µg·mL-1 against the cell line of human breast cancer (MDA-MB-231). Additionally, principal component analysis (PCA) was investigated to determine the relationship among the investigated traits and treatments. Our findings reveal that date palm fruit-derived extracts are excellent sources of biologically active constituents and substantiate their potential use in new anticancer strategies from natural resources.
Collapse
Affiliation(s)
- Ahmed S Abdelbaky
- Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Mohamed A Tammam
- Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Mohamed Yassin Ali
- Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Marwa Sharaky
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Giza 11796, Egypt
| | - Khaled Selim
- Department Food Science and Technology, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Wael M Semida
- Department of Horticulture, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Taia A Abd El-Mageed
- Department of Soil and Water, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Mohamed Fawzy Ramadan
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hesham F Oraby
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Yasser M Diab
- Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| |
Collapse
|
10
|
Habib HM, El-Fakharany EM, El-Gendi H, El-Ziney MG, El-Yazbi AF, Ibrahim WH. Palm Fruit ( Phoenix dactylifera L.) Pollen Extract Inhibits Cancer Cell and Enzyme Activities and DNA and Protein Damage. Nutrients 2023; 15:2614. [PMID: 37299576 PMCID: PMC10255713 DOI: 10.3390/nu15112614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Palm fruit pollen extract (PFPE) is a natural source of bioactive polyphenols. The primary aim of the study was to determine the antioxidant, antimicrobial, anticancer, enzyme inhibition, bovine serum albumin (BSA), and DNA-protective properties of PFPE and identify and quantify the phenolic compounds present in PFPE. The results demonstrated that PFPE exhibited potent antioxidant activity in various radical-scavenging assays, including (2,2-diphenyl-1-picrylhydrazyl) (DPPH•), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS•), nitric oxide (NO), ferric-reducing/antioxidant power (FRAP), and total antioxidant capacity (TAC). PFPE also displayed antimicrobial activity against several pathogenic bacteria. Similarly, PFPE reduced acetylcholinesterase, tyrosinase, and α-amylase activities. PFPE has been proven to have an anticancer effect against colon carcinoma (Caco-2), hepatoma (HepG-2), and breast carcinoma (MDA) cancer cells. Apoptosis occurred in PFPE-treated cells in a dose-dependent manner, and cell cycle arrest was observed. Furthermore, in breast cancer cells, PFPE down-regulated Bcl-2 and p21 and up-regulated p53 and Caspase-9. These results show that PFPE constitutes a potential source of polyphenols for pharmaceutical, nutraceutical, and functional food applications.
Collapse
Affiliation(s)
- Hosam M. Habib
- Research & Innovation Hub, Alamein International University (AIU), Alamein City 5060310, Egypt; (H.M.H.); (A.F.E.-Y.)
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA City), New Borg El Arab, Alexandria P.O. Box 21934, Egypt;
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA City), New Borg El Arab, Alexandria P.O. Box 21934, Egypt;
| | - Mohamed G. El-Ziney
- Dairy Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria P.O. Box 21545, Egypt;
| | - Ahmed F. El-Yazbi
- Research & Innovation Hub, Alamein International University (AIU), Alamein City 5060310, Egypt; (H.M.H.); (A.F.E.-Y.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City 5060310, Egypt
| | - Wissam H. Ibrahim
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
11
|
Guo X, Zhou T, Xing H, Zhang Y, Fang J, Kang T, Yao C, Yan J, Huang Y, Yao Q. Antioxidant and In Vivo Hypoglycemic Activities of Ethanol Extract from the Leaves of Engelhardia roxburghiana Wall, a Comparative Study of the Extract and Astilbin. Foods 2023; 12:foods12050927. [PMID: 36900444 PMCID: PMC10001365 DOI: 10.3390/foods12050927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
The leaves of Engelhardia roxburghiana Wall (LERW) has been used as sweet tea in China throughout history. In this study, the ethanol extract of LERW (E-LERW) was prepared and the compositions were identified by HPLC-MS/MS. It indicates that astilbin was the predominant component in E-LERW. In addition, E-LERW was abundant in polyphenols. Compared to astilbin, E-LERW presented much more powerful antioxidant activity. The E-LERW also had stronger affinity with α-glucosidase and exerted more vigorous inhibitory effect on the enzyme. Alloxan-induced diabetic mice had significantly elevated glucose and lipid levels. Treatment with E-LERW at the medium dose (M) of 300 mg/kg could reduce the levels of glucose, TG, TC, and LDL by 16.64%, 12.87%, 32.70%, and 22.99%, respectively. In addition, E-LERW (M) decreased food intake, water intake, and excretion by 27.29%, 36.15%, and 30.93%, respectively. Moreover, E-LERW (M) therapy increased the mouse weight and insulin secretion by 25.30% and 494.52%. With respect to the astilbin control, E-LERW was more efficient in reducing the food and drink consumption and protecting pancreatic islet and body organs from alloxan-induced damage. The study demonstrates that E-LERW may be a promising functional ingredient for the adjuvant therapy of diabetes.
Collapse
Affiliation(s)
- Xiaoqiang Guo
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Ting Zhou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Hongxia Xing
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yucheng Zhang
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jingmei Fang
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Tairan Kang
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Caimei Yao
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jun Yan
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yaxuan Huang
- Zhanglan College, Chengdu University, Chengdu 610106, China
| | - Qian Yao
- School of Pharmacy, Chengdu University, Chengdu 610106, China
- Correspondence: ; Tel.: +86-28-84616387
| |
Collapse
|
12
|
Meenakshi S, Misra A. Effect of dates on blood glucose and other metabolic variables: A narrative review. Diabetes Metab Syndr 2023; 17:102705. [PMID: 36702045 DOI: 10.1016/j.dsx.2023.102705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND There is a common belief that individuals with type 2 diabetes mellitus (T2DM) must avoid consumption of dates. This article aims to review and discuss the available studies on dates on different variables, specifically blood glucose. METHODS A survey of studies related to the influence of consumption of dates on blood glucose, glycosylated hemoglobin, lipid profile, and body weight was conducted between January 2009 and Nov 2022, using various data bases (PubMed, Medline, Google Scholar and Scopus). RESULTS The glycemic index (GI) of date varieties ranges from 42.8 to 74.6, and glycemic load (GL) 8.5-24. The glycemic indices of various stages of dates are; Rutab (semi-ripe), 47.2; Tamer (fully ripe, traditionally sun-dried), 45.3, and Tamer (commercial), 35.5. Glucose tolerance-based studies and cross-sectional studies show no significant changes in glycemic indices or association with glycemic worsening with intake of dates. Few randomized controlled trials (RCT) also showed no change in glycemia and weight in the intervention groups consuming dates. Some data (including one RCT) show that the consumption of dates improve total cholesterol and LDL-C. CONCLUSIONS Available studies show that consumption of dates may not lead to impairment of glycemia in patients with T2DM, however, studies have several limitations like small sample size and short duration. More RCTs pertaining to the GI of different date varieties in different amounts are needed.
Collapse
Affiliation(s)
- Sachdev Meenakshi
- Tamil Nadu Government Multi Super Specialty Hospital, Chennai, India
| | - Anoop Misra
- Diabetes Foundation (India), Safdarjung Development Area, New Delhi, 110016, India; National Diabetes Obesity and Cholesterol Foundation (N-DOC), Safdarjung Development Area, New Delhi, 110016, India; Fortis C-DOC Center of Excellence for Diabetes, Metabolic Diseases, and Endocrinology, B-16, Chirag Enclave, New Delhi, India.
| |
Collapse
|
13
|
Alsukaibi AKD, Alenezi KM, Haque A, Ahmad I, Saeed M, Verma M, Ansari IA, Hsieh MF. Chemical, biological and in silico assessment of date ( P. dactylifera L.) fruits grown in Ha'il region. Front Chem 2023; 11:1138057. [PMID: 36936534 PMCID: PMC10022733 DOI: 10.3389/fchem.2023.1138057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Dates palm (Phoenix dactylifera L.) fruits are among the most widely used fruits in the Middle East and African nations. Numerous researchers confirmed the presence of phytochemicals in P. dactylifera L. fruit and its by-products with broad-ranging biological activities. Objectives: In the present work, phytochemical and biological assessments of two different cultivars of date fruit (Shishi M1 and Majdool M2 grown in the Ha'il region of Saudi Arabia) have been carried out. Methods: Date fruits were extracted and analyzed by gas chromatography-mass spectrometry (GS-MS),liquid chromatography-mass spectrometry (LC-MS) and Fourier-transform infrared spectroscopy (FT-IR)techniques. The lyophilized methanolic extracts were analyzed for their in-vitro antiproliferative andcytotoxicity against colon cancer (HCT116) cell line. To identify the possible constituents responsible for the bioactivity, in-silico molecular docking and molecular dynamics (MD) simulation studies were carried out. Results: Both cultivars exhibited in-vitro anticancer activity (IC50 = 591.3 μg/mL and 449.9 μg/mL for M1 and M2, respectively) against colon cancer HCT-116 cells. The computational analysis results indicated procyanidin B2 and luteolin-7-O-rutinoside as the active constituents. Conclusion: Based on these results, we conclude that these cultivars could be a valuable source for developing health promoter phytochemicals, leading to the development of the Ha'il region, Saudi Arabia.
Collapse
Affiliation(s)
| | - Khalaf M. Alenezi
- Department of Chemistry, College of Science, University of Ha’il, Hail, Saudi Arabia
- *Correspondence: Khalaf M. Alenezi, ; Ashanul Haque, ; Ming-Fa Hsieh,
| | - Ashanul Haque
- Department of Chemistry, College of Science, University of Ha’il, Hail, Saudi Arabia
- *Correspondence: Khalaf M. Alenezi, ; Ashanul Haque, ; Ming-Fa Hsieh,
| | - Irfan Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Ha’il, Hail, Saudi Arabia
| | - Mahima Verma
- Department of Biosciences, Integral University, Lucknow, India
| | | | - Ming-Fa Hsieh
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan
- *Correspondence: Khalaf M. Alenezi, ; Ashanul Haque, ; Ming-Fa Hsieh,
| |
Collapse
|
14
|
Ahmad Mohd Zain MR, Abdul Kari Z, Dawood MAO, Nik Ahmad Ariff NS, Salmuna ZN, Ismail N, Ibrahim AH, Thevan Krishnan K, Che Mat NF, Edinur HA, Abdul Razab MKA, Mohammed A, Mohamed Salam SKN, Rao PV, Mohamad S, Hamat B, Zainal Abidin S, Seong Wei L, Ahmed Shokri A. Bioactivity and Pharmacological Potential of Date Palm (Phoenix dactylifera L.) Against Pandemic COVID-19: a Comprehensive Review. Appl Biochem Biotechnol 2022; 194:4587-4624. [PMID: 35579740 PMCID: PMC9110634 DOI: 10.1007/s12010-022-03952-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023]
Abstract
A novel coronavirus disease (COVID-19) or severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), transmitted from person to person, has quickly emerged as the pandemic responsible for the current global health crisis. This infection has been declared a global pandemic, resulting in a concerning number of deaths as well as complications post-infection, primarily among vulnerable groups particularly older people and those with multiple comorbidities. In this article, we review the most recent research on the role of date palm (Phoenix dactylifera L.) fruits (DPFs) to prevent or treat COVID-19 infection. The mechanisms underlying this preventive or therapeutic effect are also discussed in terms of bioactivity potentials in date palm, e.g., antimicrobial, antioxidant, anticancer, anti-diabetic, anti-inflammatory, neuroprotective, and hemolytic potential, as well as prospect against COVID-19 disease and the potential product development. Therefore, it can be concluded that regular consumption of DPFs may be associated with a lower risk of some chronic diseases. Indeed, DPFs have been widely used in folk medicine since ancient times to treat a variety of health conditions, demonstrating the importance of DPFs as a nutraceutical and source of functional nourishment. This comprehensive review aims to summarize the majority of the research on DPFs in terms of nutrient content and biologically active components such as phenolic compounds, with an emphasis on their roles in improving overall health as well as the potential product development to ensure consumers' satisfaction in a current pandemic situation. In conclusion, DPFs can be given to COVID-19 patients as a safe and effective add-on medication or supplement in addition to routine treatments.
Collapse
Affiliation(s)
| | - Zulhisyam Abdul Kari
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, 17600 Jeli, Kelantan Malaysia
| | - Mahmoud A. O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
- The Center for Applied Research On the Environment and Sustainability, The American University in Cairo, Cairo, 11835 Egypt
| | - Nik Shahman Nik Ahmad Ariff
- Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 50410 Kuala Lumpur, Malaysia
| | - Zeti Norfidiyati Salmuna
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia
| | - Norzila Ismail
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, George Town, Malaysia
| | - Al Hafiz Ibrahim
- Unit Perubatan Rehabilitasi, Pusat Pengajian Sains Perubatan, Universiti Sains Malaysia Kampus Kesihatan Kubang Kerian, Kota Bharu, Malaysia
| | - Kumara Thevan Krishnan
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, 17600 Jeli, Kelantan Malaysia
| | - Nor Fazila Che Mat
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Malaysia
| | - Hisham Atan Edinur
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Malaysia
| | | | - Aurifullah Mohammed
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, 17600 Jeli, Kelantan Malaysia
| | | | - Pasupuleti Visweswara Rao
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Kattigenahili, Yelahanka, Bangalore, 560064 Karnataka India
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Jl Riau Ujung No. 73, Pekanbaru, 28292 Riau Indonesia
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah Malaysia
| | - Sakinah Mohamad
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan Malaysia
| | - Basyarah Hamat
- Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 50410 Kuala Lumpur, Malaysia
| | - Shahriman Zainal Abidin
- Design Studies, College of Creative Arts, Kompleks Ilham, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Malaysia
| | - Lee Seong Wei
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, 17600 Jeli, Kelantan Malaysia
| | - Amran Ahmed Shokri
- Department of Orthopaedics, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia
| |
Collapse
|
15
|
Abushal SA, Elhendy HA, Abd El Maged EM, Darwish AM. Impact of ground Ajwa (
Phoenix
dactylifera
L.) seeds fortification on physical and nutritional properties of functional cookies and chocolate sauce. Cereal Chem 2021. [DOI: 10.1002/cche.10437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Suzan A. Abushal
- Department of Food Science and Nutrition College Turabah University Ministry of Education Taif University Taif Kingdom of Saudi Arabia
| | - Hassan A. Elhendy
- Home Economics Department Faculty of Agriculture Alexandria University Alexandria Egypt
| | - Enass M. Abd El Maged
- Home Economics Department Faculty of Agriculture Alexandria University Alexandria Egypt
| | - Amira M.G. Darwish
- Food Technology Department Arid Lands Cultivation Research Institute (ALCRI) City of Scientific Research and Technological Applications (SRTA City) Alexandria Egypt
| |
Collapse
|
16
|
Abstract
Many recent studies in the field of cosmetics have focused on organically sourced substances. Products made from organic materials are safe, high quality, cruelty-free, and more effective than those made from synthetic materials. Many organic compounds are known to be physiologically active in humans and have an extended storage capacity and long-lasting environmental effects. Agro-industrial waste has recently increased substantially, and the disposal of date palm waste, often performed in primitive ways such as burning, is harmful to the environment. Fruit processing industries generate over 10% of the total date seed waste daily, which could be converted into useful food products. Date fruit and seed are rich in sugar, vitamins, fiber, minerals, and phenolic compounds with antioxidant and anti-inflammatory properties that significantly promote human and animal health. This waste is rich in bioactive compounds and essential oils used in many kinds of food, medicine, and cosmetics. Most active cosmetic ingredients come from natural sources such as fruit, fish, and dairy, and recent research shows that date extract and seed oil help to reduce melanin, eczema, acne, and dry patches, while increasing skin moisture and elasticity. This review details the bioactive compounds and nutraceutical properties of date fruit and seed, and their use as cosmetic ingredients.
Collapse
|