1
|
Suarez C, Cheang SE, Larke JA, Jiang J, Weng CYC, Stacy A, Couture G, Chen Y, Bacalzo NP, Smilowitz JT, German JB, Mills DA, Lemay DG, Lebrilla CB. Development of a comprehensive food glycomic database and its application: Associations between dietary carbohydrates and insulin resistance. Food Chem 2025; 473:142977. [PMID: 39864179 DOI: 10.1016/j.foodchem.2025.142977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
Carbohydrates are an integral part of a healthy diet. The molecular compositions of carbohydrates encompass a very broad range of unique structures with many being ill-defined. This vast structural complexity is distilled into vague categories such as total carbohydrates, sugars, starches, and soluble/insoluble fibers. Structural elucidation of the food glycome is until recently extremely slow and immensely challenging. Dietary carbohydrates, including monosaccharides, oligosaccharides, glycosidic linkages, and polysaccharides were determined for the most consumed foods in the US consisting of 250 common foods using a multiglycomic platform. The food glycome was then correlated with clinical data from the National Health and Nutrition Examination Survey (NHANES) consisting of dietary recalls from 13,550 adults to determine associations between dietary carbohydrates, their structural features and insulin resistance. Several features were more powerful predictors compared to traditional measures indicating the need for molecular fine-scale food carbohydrate data in guiding precision nutrition initiatives and clinical studies.
Collapse
Affiliation(s)
- Christopher Suarez
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Shawn Ehlers Cheang
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Jules A Larke
- USDA Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| | - Jiani Jiang
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Cheng-Yu Charlie Weng
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Aaron Stacy
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Garret Couture
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Ye Chen
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Nikita P Bacalzo
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | | | - J Bruce German
- Foods for Health Institute, University of California Davis, Davis, CA, USA; Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - David A Mills
- Foods for Health Institute, University of California Davis, Davis, CA, USA; Department of Food Science and Technology, University of California Davis, Davis, CA, USA; Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Danielle G Lemay
- USDA Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA; Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
2
|
Bendtsen MK, Nowak JS, Paiva P, López Hernández M, Ferreira P, Pedersen JS, Bekker NS, Viezzi E, Bisiak F, Brodersen DE, Pedersen LH, Zervas A, Fernandes PA, Ramos MJ, Stougaard P, Thøgersen MS, Otzen DE. Cold-Active Starch-Degrading Enzymes from a Cold and Alkaline Greenland Environment: Role of Ca 2+ Ions and Conformational Dynamics in Psychrophilicity. Biomolecules 2025; 15:415. [PMID: 40149951 PMCID: PMC11940188 DOI: 10.3390/biom15030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Cold-active enzymes hold promise for energy-efficient processes. Amylases are widely used in household and industrial applications, but only a few are cold-active. Here we describe three novel secreted amylases, Rho13, Ika2 and I3C6, all from bacteria growing in the cold and alkaline ikaite columns in Greenland. They all hydrolyzed starch to smaller malto-oligomers, but only Rho13 and Ika2 hydrolyzed cyclodextrins, and only Ika2 displayed transglycosylation activity. Ika2 forms a stable dimer, while both Rho13 and I3C6 are mainly monomeric. They all have optimal active temperatures around 30-35 °C and significant enzymatic activity below 20 °C, but Rho13 and I3C6 had an alkaline optimal pH, while Ika2 was markedly acidophilic. They showed complex dependence on Ca2+ concentration, with the activity of Rho13 and I3C6 following a bell-shaped curve and Ika2 being unaffected; however, removal of Ca2+ reduced the stability of all three enzymes. Loss of structure occurred well above the temperature of optimal activity, showing the characteristic psychrophilic divorce between activity and stability. MD simulations showed that Ika2 did not have a well-defined Ca2+ binding site, while Rho13 and I3C6 both maintained one stably bound Ca2+ ion. We identified psychrophilic features as higher levels of backbone fluctuations compared to mesophilic counterparts, based on a lower number of internal hydrogen bonds and salt bridges. This increased fluctuation was also found in regions outside the active site and may provide easier substrate access and accommodation, as well as faster barrier transitions. Our work sheds further light on the many ways in which psychrophilic enzymes adapt to increased catalysis at lower temperatures.
Collapse
Affiliation(s)
- Malthe Kjær Bendtsen
- Interdisciplinary Nanoscience Center, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; (M.K.B.); (J.S.N.); (M.L.H.); (J.S.P.); (E.V.)
| | - Jan Stanislaw Nowak
- Interdisciplinary Nanoscience Center, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; (M.K.B.); (J.S.N.); (M.L.H.); (J.S.P.); (E.V.)
| | - Pedro Paiva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (P.P.); (P.F.); (P.A.F.); (M.J.R.)
| | - Marcos López Hernández
- Interdisciplinary Nanoscience Center, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; (M.K.B.); (J.S.N.); (M.L.H.); (J.S.P.); (E.V.)
- Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Pedro Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (P.P.); (P.F.); (P.A.F.); (M.J.R.)
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; (M.K.B.); (J.S.N.); (M.L.H.); (J.S.P.); (E.V.)
- Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Nicolai Sundgaard Bekker
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (N.S.B.); (L.H.P.)
| | - Elia Viezzi
- Interdisciplinary Nanoscience Center, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; (M.K.B.); (J.S.N.); (M.L.H.); (J.S.P.); (E.V.)
| | - Francesco Bisiak
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark; (F.B.); (D.E.B.)
| | - Ditlev E. Brodersen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark; (F.B.); (D.E.B.)
| | - Lars Haastrup Pedersen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (N.S.B.); (L.H.P.)
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark; (A.Z.); (P.S.); (M.S.T.)
| | - Pedro A. Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (P.P.); (P.F.); (P.A.F.); (M.J.R.)
| | - Maria Joao Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (P.P.); (P.F.); (P.A.F.); (M.J.R.)
| | - Peter Stougaard
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark; (A.Z.); (P.S.); (M.S.T.)
| | - Mariane Schmidt Thøgersen
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark; (A.Z.); (P.S.); (M.S.T.)
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; (M.K.B.); (J.S.N.); (M.L.H.); (J.S.P.); (E.V.)
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark; (F.B.); (D.E.B.)
| |
Collapse
|
3
|
Natale A, Fiori F, Turati F, La Vecchia C, Parpinel M, Rossi M. Quantification of Naturally Occurring Prebiotics in Selected Foods. Nutrients 2025; 17:683. [PMID: 40005011 PMCID: PMC11858256 DOI: 10.3390/nu17040683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Prebiotics are non-digestible dietary compounds, defined as substrates that are utilised by host microorganisms conferring a health benefit. Although fructo-oligosaccharides (FOSs) and galacto-oligosaccharides (GOSs) are among the most studied prebiotics and support intestinal normobiosis, comprehensive data on their content in foods remain limited. Objectives: The objective was to quantify the content of FOSs (kestose, nystose, and 1 F-β-fructofuranosylnystose) and GOSs (raffinose and stachyose) in 35 foods, including fruit and nuts, legumes, and cereals. We also estimated the intakes of prebiotics in an Italian population. Methods: We analysed the prebiotic content in foods using high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). We estimated the prebiotic intake of 100 healthy controls from a case-control study on colorectal cancer conducted in Italy between 2017 and 2019. We used dietary information collected through a food frequency questionnaire and the prebiotic data quantified in this and a previous study. Results: FOSs were mostly detected in cereal products, with wheat bran and whole-meal rye flour containing the highest amount (around 0.7 g/100 g each). GOSs were most abundant in legumes, especially in dried soy products (around 4.0 g/100 g each). Mean daily intake was 0.236 g for total FOSs and 0.371 g for total GOSs. Wheat bran, raspberries, chestnuts, walnuts, raisins, soy milk, and soy yoghurt overall accounted for 3.9% of kestose, 1.2% of nystose, 0% of 1F-β-fructofuranosylnystose, 15.5% of raffinose, and 8.3% of stachyose total intakes. Conclusions: The present study enables the development of a comprehensive database on prebiotic content in foods through a consistent analytical method. This makes prebiotic intake assessments more accurate than previously available data and facilitates future epidemiological studies investigating their potential effects on health.
Collapse
Affiliation(s)
- Arianna Natale
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20133 Milan, Italy; (A.N.); (F.T.); (C.L.V.)
| | - Federica Fiori
- Department of Medicine, University of Udine, 33100 Udine, Italy;
| | - Federica Turati
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20133 Milan, Italy; (A.N.); (F.T.); (C.L.V.)
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20133 Milan, Italy; (A.N.); (F.T.); (C.L.V.)
| | - Maria Parpinel
- Department of Medicine, University of Udine, 33100 Udine, Italy;
| | - Marta Rossi
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20133 Milan, Italy; (A.N.); (F.T.); (C.L.V.)
| |
Collapse
|
4
|
Couture G, Cheang SE, Suarez C, Chen Y, Bacalzo NP, Jiang J, Weng CYC, Stacy A, Castillo JJ, Delannoy-Bruno O, Webber DM, Barratt MJ, Gordon JI, Mills DA, German JB, Fukagawa NK, Lebrilla CB. A multi-glycomic platform for the analysis of food carbohydrates. Nat Protoc 2024; 19:3321-3359. [PMID: 39026121 DOI: 10.1038/s41596-024-01017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/30/2024] [Indexed: 07/20/2024]
Abstract
Carbohydrates comprise the largest fraction of most diets and exert a profound impact on health. Components such as simple sugars and starch supply energy, while indigestible components, deemed dietary fiber, reach the colon to provide food for the tens of trillions of microbes that make up the gut microbiota. The interactions between dietary carbohydrates, our gastrointestinal tracts, the gut microbiome and host health are dictated by their structures. However, current methods for analysis of food glycans lack the sensitivity, specificity and throughput needed to quantify and elucidate these myriad structures. This protocol describes a multi-glycomic approach to food carbohydrate analysis in which the analyte might be any food item or biological material such as fecal and cecal samples. The carbohydrates are extracted by ethanol precipitation, and the resulting samples are subjected to rapid-throughput liquid chromatography (LC)-tandem mass spectrometry (LC-MS/MS) methods. Quantitative analyses of monosaccharides, glycosidic linkages, polysaccharides and alcohol-soluble carbohydrates are performed in 96-well plates at the milligram scale to reduce the biomass of sample required and enhance throughput. Detailed stepwise processes for sample preparation, LC-MS/MS and data analysis are provided. We illustrate the application of the protocol to a diverse set of foods as well as different apple cultivars and various fermented foods. Furthermore, we show the utility of these methods in elucidating glycan-microbe interactions in germ-free and colonized mice. These methods provide a framework for elucidating relationships between dietary fiber, the gut microbiome and human physiology. These structures will further guide nutritional and clinical feeding studies that enhance our understanding of the role of diet in nutrition and health.
Collapse
Affiliation(s)
- Garret Couture
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Shawn Ehlers Cheang
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Christopher Suarez
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Ye Chen
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Nikita P Bacalzo
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Jiani Jiang
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Cheng-Yu Charlie Weng
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Aaron Stacy
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Juan J Castillo
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Omar Delannoy-Bruno
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel M Webber
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Michael J Barratt
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jeffrey I Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - David A Mills
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, USA
| | - J Bruce German
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Naomi K Fukagawa
- USDA Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, USA.
- Foods for Health Institute, University of California, Davis, Davis, CA, USA.
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
5
|
Bose D, Padmavati M. Honey Authentication: A review of the issues and challenges associated with honey adulteration. FOOD BIOSCI 2024; 61:105004. [DOI: 10.1016/j.fbio.2024.105004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Michalski R, Kończyk J. Ion Chromatography and Related Techniques in Carbohydrate Analysis: A Review. Molecules 2024; 29:3413. [PMID: 39064991 PMCID: PMC11279986 DOI: 10.3390/molecules29143413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Ion chromatography and related techniques have been the most popular separation methods used in the determination of organic and inorganic anions and cations, predominantly in water and wastewater samples. Making progress in their development and introducing new stationary phases, methods of detection and preparation of samples for analyses have given rise to the broadening of their analytical range. Nowadays, they are also used for substances that are not ionic by nature but can convert to such forms under certain conditions. These encompass, among others, carbohydrates, whose role and significance in humans' lives and environment is invaluable. Their presence in the air is mostly due to the industrial burning of biomass for energy production purposes. In addition, the content of sugars in plants, fruits and vegetables, constituting the base of human diets, affects our health condition. Given that, there is not only a need for their determination by means of routine methods but also for searching for novel analytical solutions. Based on literature data from the past decade, this paper presents the possibilities and examples of applications regarding ion chromatography and related techniques for the determination of carbohydrates in environmental samples, biomass and plants constituting food or raw materials for food production. Attention has been paid to the virtues and limitations of the discussed separation methods in this respect. Moreover, perspectives on their development have been defined.
Collapse
Affiliation(s)
- Rajmund Michalski
- Institute of Environmental Engineering of Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Joanna Kończyk
- Institute of Chemistry, Faculty of Science & Technology, Jan Dlugosz University in Czestochowa, 42-200 Częstochowa, Poland;
| |
Collapse
|
7
|
Escuredo O, Rodríguez-Flores MS, Míguez M, Seijo MC. Multivariate Statistical Approach for the Discrimination of Honey Samples from Galicia (NW Spain) Using Physicochemical and Pollen Parameters. Foods 2023; 12:foods12071493. [PMID: 37048314 PMCID: PMC10094653 DOI: 10.3390/foods12071493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Raw honey is a food with a close relation to the territory in which it is produced because of factors such as soil conditions, weather patterns, and plant communities living in the area together. Furthermore, beekeeping management affects the properties of honey. Protected Geographical Indication Miel de Galicia protects the honey produced in Galicia (Northwest Spain). Various types of honeys (362 samples) from this geographical area were analyzed using chemometric techniques. Principal component analysis was favorable to analyzing the physicochemical and pollen variables with the greatest weight in the differentiation of honey. The linear discriminant analysis correctly classified 89.8% of the samples according to the botanical origin using main pollen spectra and physicochemical attributes (moisture, pH, electrical conductivity, diastase content, phenols, flavonoids, and color). Regarding unifloral honey, blackberry, eucalyptus, and heather honeys were correctly grouped, while five chestnut honeys and fourteen samples of honeydew honeys were misclassified. The chestnut and honeydew honeys have similar physicochemical properties and frequently similar pollen spectra profiles complicating the differentiation. Experimental evidence suggests the potential of multivariate statistics in the characterization of honey of the same geographical origin. Therefore, the classification results were good, with electrical conductivity, total phenol content, total flavonoid content and dominant pollens Eucalyptus, Erica, Rubus and Castanea sativa as the variables of higher importance in the differentiation of botanical origin of honeys.
Collapse
Affiliation(s)
- Olga Escuredo
- Department of Vegetal Biology and Soil Sciences, Faculty of Sciences, University of Vigo, As Lagoas, 32004 Ourense, Spain
| | - María Shantal Rodríguez-Flores
- Department of Vegetal Biology and Soil Sciences, Faculty of Sciences, University of Vigo, As Lagoas, 32004 Ourense, Spain
| | - Montserrat Míguez
- Department Analytical and Food Chemistry, Faculty of Sciences, University of Vigo, As Lagoas, 32004 Ourense, Spain
| | - María Carmen Seijo
- Department of Vegetal Biology and Soil Sciences, Faculty of Sciences, University of Vigo, As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
8
|
Sato K, Yamamoto T, Mitamura K, Taga A. Separation of Fructosyl Oligosaccharides in Maple Syrup by Using Charged Aerosol Detection. Foods 2021; 10:foods10123160. [PMID: 34945711 PMCID: PMC8701490 DOI: 10.3390/foods10123160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 01/02/2023] Open
Abstract
Fructosyl oligosaccharides, including fructo-oligosaccharide (FOS), are gaining popularity as functional oligosaccharides and have been found in various natural products. Our previous study suggested that maple syrup contains an unidentified fructosyl oligosaccharide. Because these saccharides cannot be detected with high sensitivity using derivatization methods, they must be detected directly. As a result, an analytical method based on charged aerosol detection (CAD) that can detect saccharides directly was optimized in order to avoid relying on these structures and physical properties to clarify the profile of fructosyl oligosaccharides in maple syrup. This analytical method is simple and can analyze up to hepta-saccharides in 30 min. This analytical method was also reliable and reproducible with high validation values. It was used to determine the content of saccharides in maple syrup, which revealed that it contained not only fructose, glucose, and sucrose but also FOS such as 1-kestose and nystose. Furthermore, we discovered a fructosyl oligosaccharide called neokestose in maple syrup, which has only been found in a few natural foods. These findings help to shed light on the saccharides profile of maple syrup.
Collapse
|
9
|
Suarez AFL, Tirador ADG, Villorente ZM, Bagarinao CF, Sollesta JVN, Dumancas GG, Sun Z, Zhan ZQ, Saludes JP, Dalisay DS. The Isorhamnetin-Containing Fraction of Philippine Honey Produced by the Stingless Bee Tetragonula biroi Is an Antibiotic against Multidrug-Resistant Staphylococcus aureus. Molecules 2021; 26:1688. [PMID: 33802916 PMCID: PMC8002709 DOI: 10.3390/molecules26061688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 12/27/2022] Open
Abstract
Honey exhibits antibacterial and antioxidant activities that are ascribed to its diverse secondary metabolites. In the Philippines, the antibacterial and antioxidant activities, as well as the bioactive metabolite contents of the honey, have not been thoroughly described. In this report, we investigated the in vitro antibacterial and antioxidant activities of honey from Apis mellifera and Tetragonula biroi, identified the compound responsible for the antibacterial activity, and compared the observed bioactivities and metabolite profiles to that of Manuka honey, which is recognized for its antibacterial and antioxidant properties. The secondary metabolite contents of honey were extracted using a nonionic polymeric resin followed by antibacterial and antioxidant assays, and then spectroscopic analyses of the phenolic and flavonoid contents. Results showed that honey extracts produced by T. biroi exhibits antibiotic activity against Staphylococcal pathogens as well as high antioxidant activity, which are correlated to its high flavonoid and phenolic content as compared to honey produced by A. mellifera. The bioassay-guided fractionation paired with Liquid Chromatography Mass Spectrometry (LCMS) and tandem MS analyses found the presence of the flavonoid isorhamnetin (3-methylquercetin) in T. biroi honey extract, which was demonstrated as one of the compounds with inhibitory activity against multidrug-resistant Staphylococcus aureus ATCC BAA-44. Our findings suggest that Philippine honey produced by T. biroi is a potential nutraceutical that possesses antibiotic and antioxidant activities.
Collapse
Affiliation(s)
- Angelica Faith L. Suarez
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (A.F.L.S.); (A.D.G.T.)
| | - April Dawn G. Tirador
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (A.F.L.S.); (A.D.G.T.)
| | - Zenith M. Villorente
- Maridan Industries, Inc., Jaro, Iloilo City 5000, Philippines; (Z.M.V.); (C.F.B.); (J.V.N.S.)
| | - Cathrina F. Bagarinao
- Maridan Industries, Inc., Jaro, Iloilo City 5000, Philippines; (Z.M.V.); (C.F.B.); (J.V.N.S.)
| | - Jan Vincent N. Sollesta
- Maridan Industries, Inc., Jaro, Iloilo City 5000, Philippines; (Z.M.V.); (C.F.B.); (J.V.N.S.)
| | - Gerard G. Dumancas
- Department of Mathematics and Physical Sciences, Louisiana State University at Alexandria, Alexandria, LA 71302, USA;
- Balik Scientist Program, Philippine Council for Health Research and Development (PCHRD), Department of Science and Technology, Bicutan, Taguig City 1631, Philippines;
| | - Zhe Sun
- Shimadzu Asia Pacific (SAP), Singapore Science Park I, Singapore 118264, Singapore; (Z.S.); (Z.Q.Z.)
| | - Zhao Qi Zhan
- Shimadzu Asia Pacific (SAP), Singapore Science Park I, Singapore 118264, Singapore; (Z.S.); (Z.Q.Z.)
| | - Jonel P. Saludes
- Balik Scientist Program, Philippine Council for Health Research and Development (PCHRD), Department of Science and Technology, Bicutan, Taguig City 1631, Philippines;
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines
- Department of Chemistry, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City 5000, Philippines
| | - Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (A.F.L.S.); (A.D.G.T.)
- Balik Scientist Program, Philippine Council for Health Research and Development (PCHRD), Department of Science and Technology, Bicutan, Taguig City 1631, Philippines;
- Department of Biology, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City 5000, Philippines
| |
Collapse
|
10
|
Prediction of Physicochemical Properties in Honeys with Portable Near-Infrared (microNIR) Spectroscopy Combined with Multivariate Data Processing. Foods 2021; 10:foods10020317. [PMID: 33546316 PMCID: PMC7913484 DOI: 10.3390/foods10020317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 11/16/2022] Open
Abstract
There is an increase in the consumption of natural foods with healthy benefits such as honey. The physicochemical composition contributes to the particularities of honey that differ depending on the botanical origin. Botanical and geographical declaration protects consumers from possible fraud and ensures the quality of the product. The objective of this study was to develop prediction models using a portable near-Infrared (MicroNIR) Spectroscopy to contribute to authenticate honeys from Northwest Spain. Based on reference physicochemical analyses of honey, prediction equations using principal components analysis and partial least square regression were developed. Statistical descriptors were good for moisture, hydroxymethylfurfural (HMF), color (Pfund, L and b* coordinates of CIELab) and flavonoids (RSQ > 0.75; RPD > 2.0), and acceptable for electrical conductivity (EC), pH and phenols (RSQ > 0.61; RDP > 1.5). Linear discriminant analysis correctly classified the 88.1% of honeys based on physicochemical parameters and botanical origin (heather, chestnut, eucalyptus, blackberry, honeydew, multifloral). Estimation of quality and physicochemical properties of honey with NIR-spectra data and chemometrics proves to be a powerful tool to fulfil quality goals of this bee product. Results supported that the portable spectroscopy devices provided an effective tool for the apicultural sector to rapid in-situ classification and authentication of honey.
Collapse
|