1
|
Song S, Yu Y, Song S, Zhang X, Zhang W. Effect of co-pigments on anthocyanins of wild cranberry and investigation of interaction mechanisms. Food Chem 2025; 466:142212. [PMID: 39612847 DOI: 10.1016/j.foodchem.2024.142212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/03/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
This study systematically evaluated the color-enhancing effects of different co-pigmented molecules (amino acids, peptides, flavonoids and phenolic acids) with cranberry anthocyanins under different environmental conditions (light, dark, high temperature and ascorbic acid) and their potential mechanisms by various means, such as degradation kinetics, color stability, H NMR spectroscopy, and structural simulation analyses. The results showed that the introduction of co-pigments induced a strong color-enhancing effect and bathochromic shift, inhibited the degradation of anthocyanins (9.34 % ∼ 45.00 %), and prolonged the half-life of anthocyanins (14.33 % ∼ 104.56 %). Among them, catechin, ferulic acid and tryptophan, by virtue of their large molecular planes, flexible side chains and abundant substituents, altered the core structure of anthocyanins and the electron cloud density of H atoms on the acylated molecules, which significantly enhanced their stability upon binding to anthocyanins. In addition, molecular docking simulations revealed an interaction mode between co-pigments and anthocyanins dominated by hydrogen bonding and π-π stacking interactions.
Collapse
Affiliation(s)
- Shuang Song
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yuhe Yu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Shengzhao Song
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
2
|
Xue H, Zhao J, Wang Y, Shi Z, Xie K, Liao X, Tan J. Factors affecting the stability of anthocyanins and strategies for improving their stability: A review. Food Chem X 2024; 24:101883. [PMID: 39444439 PMCID: PMC11497485 DOI: 10.1016/j.fochx.2024.101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
Anthocyanins, as the most common and widely distributed flavonoid compounds, are widely present in fruits and vegetables. Anthocyanins show various biological activities including antioxidant, anticancer, anti-inflammatory, antibacterial, and immunomodulatory activities. Hence, anthocyanins are widely used in the fields of food and pharmaceuticals. However, anthocyanins are susceptible to environmental and processing factors due to their structural characteristics, which leads to poor storage and processing stability. Numerous studies have indicated that structural modification, co-pigmentation, and delivery systems could improve the stability and bioavailability of anthocyanins in the external environment. This article reviews the main factors affecting the stability of anthocyanins. Moreover, this review comprehensively introduces methods to improve the stability of anthocyanins. Finally, the current problems and future research advances of anthocyanins are also introduced. The findings can provide important references for deeper research on the stability, biological activities, and bioavailability of anthocyanins.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jianduo Zhao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yu Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Zhangmeng Shi
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, NO. 88 East Fuxing Road, Yuetang District, Xiangtan 411100, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
- Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding, 071002, China
| |
Collapse
|
3
|
de Araújo FF, Farias DDP, Neri-Numa IA, Pastore GM, Sawaya ACHF. Bioaccessibility and Antidiabetic Potential of xique-xique and mandacaru Fruits in a Simulated Gastrointestinal Tract Model. Foods 2024; 13:3319. [PMID: 39456381 PMCID: PMC11507249 DOI: 10.3390/foods13203319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study evaluated the influence of gastrointestinal digestion on the bioaccessibility and antidiabetic potential of xique-xique (Pilosocereus gounellei) and mandacaru (Cereus jamacaru) fruits. After digestion, the content of total phenolics and flavonoids reduced by 58.3 and 73.51% in xique-xique and 48.33 and 88.43% in mandacaru. In addition, compounds such as rutin, ρ-coumaric acid, catechin and epicatechin reduced during digestion for both fruits. The antioxidant potential by the ABTS assay increased by 153.3% for xique-xique and 273.46% for mandacaru in the intestinal phase. However, using the ORAC assay, the antioxidant potential of xique-xique reduced from 255.42 to 112.17 μmol TE g-1. The capacity of xique-xique fruit to reduce α-amylase activity reduced 23.71-fold after digestion, but the potential to inhibit α-glucosidase increased 17.8-fold. The antiglycation potential reduced in both fruits after the in vitro gastrointestinal digestion. Thus, the bioaccessibility of the phenolic compounds from the fruits, as well as their functional potential, were influenced by the digestive process, as well as by the sample evaluated.
Collapse
Affiliation(s)
| | - David de Paulo Farias
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas CEP 13083-862, SP, Brazil (G.M.P.)
| | - Iramaia Angélica Neri-Numa
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas CEP 13083-862, SP, Brazil (G.M.P.)
| | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas CEP 13083-862, SP, Brazil (G.M.P.)
| | | |
Collapse
|
4
|
Brezoiu AM, Deaconu M, Mitran RA, Sedky NK, Schiets F, Marote P, Voicu IS, Matei C, Ziko L, Berger D. The Antioxidant and Anti-Inflammatory Properties of Wild Bilberry Fruit Extracts Embedded in Mesoporous Silica-Type Supports: A Stability Study. Antioxidants (Basel) 2024; 13:250. [PMID: 38397847 PMCID: PMC10886266 DOI: 10.3390/antiox13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Polyphenolic extracts from wild bilberries (Vaccinium myrtillus L.) have shown antioxidant and anti-inflammatory effects, but they are prone to degradation when exposed to environmental factors, limiting their use in biomedical applications. To overcome this issue, this study proposed the embedding of wild bilberry fruit ethanolic extracts in pristine mesoporous silica functionalized with organic groups (mercaptopropyl and propionic acid), as well as coated with fucoidan, a biopolymer. Herein, we report a stability study of free and incorporated extracts in mesoporous silica-type supports in high-humidity atmospheres at 40 °C up to 28 days, using HPLC analysis, thermal analysis, and radical scavenging activity determination. Better chemical and thermal stability over time was observed when the extracts were incorporated in mesoporous silica-type supports. After 12 months of storage, higher values of antioxidant activity were determined for the extract embedded in the supports, silica modified with mercaptopropyl groups (MCM-SH), and fucoidan-coated silica (MCM-SH-Fuc) than that of the free extract due to a synergistic activity between the support and extract. All encapsulated extracts demonstrated remarkable effects in reducing NO production in LPS-stimulated RAW 264.7 cells. The treatment with extract embedded in MCM-SH-Fuc in a dose of 10 μg/mL surpassed the effect of free extract in the same concentration. For the extract encapsulated in an MCM-SH support, a lower IC50 value (0.69 μg/mL) towards COX-2 was obtained, comparable with that of Indomethacin (0.6 μg/mL). Also, this sample showed a higher selectivity index (2.71) for COX-2 than the reference anti-inflammatory drug (0.98). The developed formulations with antioxidant and anti-inflammatory properties could be further used in nutraceuticals.
Collapse
Affiliation(s)
- Ana-Maria Brezoiu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (M.D.); (I.-S.V.); (C.M.)
| | - Mihaela Deaconu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (M.D.); (I.-S.V.); (C.M.)
| | - Raul-Augustin Mitran
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Nada K. Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire, Hosted by Global Academic Foundation, R5 New Garden City, New Administrative Capital, Cairo 11835, Egypt; (N.K.S.); (L.Z.)
| | - Frédéric Schiets
- UMR 5280 CNRS, University Claude Bernard Lyon 1 ISA, 5 Rue de la Doua, 69100 Villeurbanne, France; (F.S.); (P.M.)
| | - Pedro Marote
- UMR 5280 CNRS, University Claude Bernard Lyon 1 ISA, 5 Rue de la Doua, 69100 Villeurbanne, France; (F.S.); (P.M.)
| | - Iulia-Stefania Voicu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (M.D.); (I.-S.V.); (C.M.)
| | - Cristian Matei
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (M.D.); (I.-S.V.); (C.M.)
| | - Laila Ziko
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire, Hosted by Global Academic Foundation, R5 New Garden City, New Administrative Capital, Cairo 11835, Egypt; (N.K.S.); (L.Z.)
| | - Daniela Berger
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (M.D.); (I.-S.V.); (C.M.)
| |
Collapse
|
5
|
Kopystecka A, Kozioł I, Radomska D, Bielawski K, Bielawska A, Wujec M. Vaccinium uliginosum and Vaccinium myrtillus-Two Species-One Used as a Functional Food. Nutrients 2023; 15:4119. [PMID: 37836403 PMCID: PMC10574057 DOI: 10.3390/nu15194119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Vaccinium uliginosum L. (commonly known as bog bilberry) and Vaccinium myrtillus L. (commonly known as bilberry) are species of the genus Vaccinium (family Ericaceae). The red-purple-blue coloration of blueberries is attributed largely to the anthocyanins found in bilberries. Anthocyanins, known for their potent biological activity as antioxidants, have a significant involvement in the prophylaxis of cancer or other diseases, including those of metabolic origin. Bilberry is the most important economically wild berry in Northern Europe, and it is also extensively used in juice and food production. A review of the latest literature was performed to assess the composition and biological activity of V. uliginosum and V. myrtillus. Clinical studies confirm the benefits of V. uliginosum and V. myrtillus supplementation as part of a healthy diet. Because of their antioxidant, anti-inflammatory, anti-cancer, and apoptosis-reducing activity, both bog bilberries and bilberries can be used interchangeably as a dietary supplement with anti-free radical actions in the prevention of cancer diseases and cataracts, or as a component of sunscreen preparations.
Collapse
Affiliation(s)
- Agnieszka Kopystecka
- Students’ Scientific Circle on Medical Law at the Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (I.K.)
| | - Ilona Kozioł
- Students’ Scientific Circle on Medical Law at the Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (I.K.)
| | - Dominika Radomska
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1 Street, 15-089 Bialystok, Poland;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1 Street, 15-089 Bialystok, Poland;
| | - Anna Bielawska
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1 Street, 15-089 Bialystok, Poland;
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| |
Collapse
|
6
|
Impact of Simulated Gastrointestinal Conditions on Antiglycoxidant and α-Glucosidase Inhibition Capacities of Cyanidin-3- O-Glucoside. Antioxidants (Basel) 2021; 10:antiox10111670. [PMID: 34829542 PMCID: PMC8614994 DOI: 10.3390/antiox10111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/03/2022] Open
Abstract
Cyanidin-3-O-glucoside (C3G) is a widespread anthocyanin derivative, which has been reported in vitro to exert potent antioxidant, antiglycation and α-glucosidase inhibition effects. Nevertheless, the physiological relevance of such properties remains uncertain considering its significant instability in gastrointestinal conditions. A simulated digestion procedure was thus instigated to assess the influence of gastric and intestinal media on its chemical integrity and biological activities. HPLC analyses of digested C3G samples confirmed the striking impact of intestinal conditions, as attested by a decomposition ratio of 70%. In contrast, with recovery rates of around 90%, antiglycation, as well as DPPH and ABTS scavenging assays, uniformly revealed a noteworthy persistence of its antiglycoxidant capacities. Remarkably, a prominent increase of its α-glucosidase inhibition activity was even observed after the intestinal phase, suggesting that classical in vitro evaluations might underestimate C3G antidiabetic potential. Consequently, the present data provide novel and specific insights on C3G’s digestive fate, suggesting that the gastrointestinal tract does not profoundly affect its positive action on oxidative and carbonyl stresses. More specifically, it also tends to support its regulating effects on postprandial hyperglycemia and its potential usefulness for diabetes management.
Collapse
|