1
|
Aditya, Neeraj, Bhatia JN, Jarial RS, Jarial K. Cultivation technology optimization and identification of secondary metabolites from elm oyster mushroom Hypsizygus ulmarius (Bull.) Redhead (Agaricomycetes) through GC-MS metabolomic profiling from India. Mycologia 2025; 117:347-373. [PMID: 40111001 DOI: 10.1080/00275514.2025.2452307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/08/2025] [Indexed: 03/22/2025]
Abstract
Hypsizygus ulmarius, a novel oyster mushroom species, offers potential scope due to its low-cost production, high biological efficiency, and notable nutritional, medicinal, and therapeutic properties. The present study standardized commercial cultivation technology for H. ulmarius in the Trans-Gangetic Plains of India. The mycelium grew well on potato dextrose agar and carrot extract broth at pH 8.0 and temperature 25 C. Wheat straw supplemented with the cotton seed hull at the rate of 10.0% dose, spawned with pearl millet grain spawn at the rate of 5.0% spawn dose, gave the highest mushroom yield (953.66 g/0.4 kg dry substrate) with biological efficiency (238.41%). The first flush sporocarps were freeze-dried for physicochemical characterization, revealing 16 strong peaks and 8 functional groups via Fourier transform infrared (FTIR) analysis. Particle size averaged 45.97 µm of mushroom powder, and scanning electron microscopy (SEM) analysis showed diverse surface textures. Gas chromatography-mass spectrometry metabolic profiling identified 20 key secondary metabolites each from hexane and methanolic extracts, with therapeutic uses that are valuable for pharmaceutical, nutraceutical, and food industry applications.
Collapse
Affiliation(s)
- Aditya
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K; An Institute of National Importance of India), Kundli, Sonipat, Haryana 131028, India
| | - Neeraj
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K; An Institute of National Importance of India), Kundli, Sonipat, Haryana 131028, India
| | - J N Bhatia
- Department of Plant Pathology, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, Haryana 125004, India
| | - R S Jarial
- Department of Plant Pathology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry (Dr. YSP UHF), Nauni, Solan, Himachal Pradesh 173230, India
| | - K Jarial
- Department of Plant Pathology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry (Dr. YSP UHF), Nauni, Solan, Himachal Pradesh 173230, India
| |
Collapse
|
2
|
Cardwell G, Bornman JF, James AP, Daly A, Dabos G, Adorno P, Jakobsen J, Dunlop E, Black LJ. Effect of household cooking on the retention of vitamin D 2 and 25-hydroxyvitamin D 2 in pulse UV-irradiated, air-dried button mushrooms (Agaricus bisporus). Food Chem 2023; 424:136387. [PMID: 37224637 DOI: 10.1016/j.foodchem.2023.136387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023]
Abstract
Vitamin D deficiency has widespread global prevalence. Fresh mushrooms exposed to ultraviolet (UV) radiation generate vitamin D2 which remains after drying. It is not clear if vitamin D2 is retained after rehydration and cooking of dried mushrooms. The aim of this study was to determine the true retention of both vitamin D2 and 25-hydroxyvitamin D2 (25(OH)D2) after cooking UV-irradiated, air-dried, then rehydrated button mushrooms (Agaricus bisporus). Mushrooms were exposed to pulsed UV radiation, then air-dried in a convection oven, followed by rehydration in warm water. Samples were cooked in three different ways: frying (5 min), baking (10 min, 200 °C) and boiling (20 min, 90 °C). Compared to rehydrated, uncooked controls, there was a high retention of D vitamers (≥95%) after cooking. Frying and baking resulted in significantly higher vitamin D2 retention compared to boiling (p < 0.0001). UV-irradiated, dried mushrooms are a valuable source of vitamin D2 after rehydration and cooking.
Collapse
Affiliation(s)
- Glenn Cardwell
- Curtin School of Population Health, Curtin University, Kent Street, Bentley, WA 6102, Australia.
| | - Janet F Bornman
- Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia.
| | - Anthony P James
- Curtin School of Population Health, Curtin University, Kent Street, Bentley, WA 6102, Australia.
| | - Alison Daly
- Curtin School of Population Health, Curtin University, Kent Street, Bentley, WA 6102, Australia.
| | - Georgios Dabos
- National Measurement Institute, 1/153 Bertie Street, Port Melbourne, VIC 3207, Australia.
| | - Paul Adorno
- National Measurement Institute, 1/153 Bertie Street, Port Melbourne, VIC 3207, Australia.
| | - Jette Jakobsen
- National Food Institute, Technical University of Denmark, 2800 Kongens, Lyngby, Denmark.
| | - Eleanor Dunlop
- Curtin School of Population Health, Curtin University, Kent Street, Bentley, WA 6102, Australia.
| | - Lucinda J Black
- Curtin School of Population Health, Curtin University, Kent Street, Bentley, WA 6102, Australia; Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia.
| |
Collapse
|
3
|
Cardwell G, Bornman JF, James AP, Daly A, Dunlop E, Dabos G, Adorno P, Black LJ. The Retention of Vitamin D2 and 25-Hydroxyvitamin D2 in Pulse UV-Irradiated Dried Button Mushrooms (Agaricus bisporus) after 12 Months of Storage. Foods 2023; 12:foods12071429. [PMID: 37048250 PMCID: PMC10093608 DOI: 10.3390/foods12071429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Fresh mushrooms exposed to ultraviolet (UV) radiation prior to drying generate high concentrations of vitamin D2. The aim of this study was to determine the retention of D vitamers in mushrooms that were pulse UV irradiated, then air dried, and stored for up to 12 months. Fresh button mushrooms (A. bisporus) were exposed to pulsed UV radiation (dose 200 mJ/cm2, peak of 17.5 W/cm2), air dried and vacuum sealed before being stored in the dark at room temperature. After storage, samples were freeze dried and quantified for D vitamers using triple quadrupole mass spectrometry. After 3, 6 and 12 months of storage, there was 100% (11.0 ± 0.8 µg/g dry weight (DW), 93% (10.1 ± 0.6 µg/g DW) and 58% (5.5 ± 0.6 µg/g DW) retention of vitamin D2 and 88% (0.14 ± 0.01 µg/g DW), 71% (0.11 ± 0.01 µg/g DW) and 68% (0.1 ± 0.01 µg/g DW) retention of 25-hydroxyvitamin D2 (25(OH)D2), respectively. Compared to the irradiated dried mushrooms that were not stored, the D vitamer concentration was statistically significantly lower (p < 0.05) at 6 and 12 months for 25(OH)D2 and at 12 months for vitamin D2. Sufficient vitamin D2 (99 µg) remained after 12 months storage to provide at least 100% of daily dietary vitamin D requirements in a 20 g serving.
Collapse
|
4
|
Rondanelli M, Moroni A, Zese M, Gasparri C, Riva A, Petrangolini G, Perna S, Mazzola G. Vitamin D from UV-Irradiated Mushrooms as a Way for Vitamin D Supplementation: A Systematic Review on Classic and Nonclassic Effects in Human and Animal Models. Antioxidants (Basel) 2023; 12:antiox12030736. [PMID: 36978984 PMCID: PMC10045067 DOI: 10.3390/antiox12030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Recent literature has shown that vitamin D, in addition to its well-known activity on the skeleton, has many positive effects on health. Unfortunately, it is not easy to meet intake needs solely with food. Mushrooms could provide a valid way to achieve this goal, because they are one of the few sources of vitamin D. The aim of this systematic review was to summarize what has been reported in the literature on the treatment of animal and human models with irradiated commercial mushrooms, with particular attention paid to the effects on clinical outcomes associated with the classical and nonclassical vitamin D functions. A total of 18 articles were selected. Six studies were conducted on human samples, while twelve were focused on animal models. The six studies conducted in humans involved a large number of subjects (663), but the treatment period was relatively short (1–6 months). Furthermore, the treatment dosage was different in the various groups (600–3800 IU/day). Probably for this reason, the studies did not demonstrate clinical efficacy on the parameters evaluated (cognitive functions, muscle system/function, metabolic syndrome). Indeed, those studies demonstrated an efficacy in increasing the blood levels of 25(OH)D2, but not in increasing the levels of 25(OH)D total. In 9 of 12 studies conducted on the animal model, however, a clinical efficacy on bone metabolism, inflammation, and cognitive performance was demonstrated. The results of this systematic review indicate that the intake of vitamin D from irradiated mushrooms could possibly help to meet vitamin D needs, but the dosage and the time of treatment tested need to be evaluated. Therefore, studies conducted in humans for longer periods than the studies carried out up to now are necessary, with defined dosages, in order to also evaluate the clinical efficacy demonstrated in animal models both for the classical (bone metabolism) and nonclassical (muscle function, cognitive performance, anti-inflammatory, and antioxidant activities) effects of vitamin D.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, 27100 Pavia, Italy
| | - Alessia Moroni
- Endocrinology and Nutrition Unit, Azienda di Servizi Alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382381739
| | - Marco Zese
- Endocrinology and Nutrition Unit, Azienda di Servizi Alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, 27100 Pavia, Italy
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi Alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, 27100 Pavia, Italy
| | | | | | - Simone Perna
- Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Giuseppe Mazzola
- Endocrinology and Nutrition Unit, Azienda di Servizi Alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
5
|
Superfine Marigold Powder Improves the Quality of Sponge Cake: Lutein Fortification, Texture, and Sensory Properties. Foods 2023; 12:foods12030508. [PMID: 36766037 PMCID: PMC9914822 DOI: 10.3390/foods12030508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
This study aimed to investigate and optimize the quality and sensory properties of baked products with lutein-enriched marigold flower powder (MP). Lutein-enriched marigold flowers produced via hydroponic methods using LED lights were used as a functional material in sponge cakes to increase lutein content. MP particles were divided into coarse (Dv50 = 315 μm), fine (Dv50 = 119 μm), and superfine MP (Dv50 = 10 μm) fractions and added to the sponge cake after being designated to control (sponge cake prepared without MP), coarse MPS (sponge cake prepared with coarse MP), fine MPS (sponge cake prepared with fine MP), and superfine MPS (sponge cake prepared with superfine MP) groups. The sizes and surface properties of superfine MP particles were more homogeneous and smoother than the other samples. As the particle size decreased, the specific volume increased, whereas baking loss, hardness, and chewiness of the sponge cake decreased. Superfine MP and superfine MPS had the highest lutein content. The flavor of marigold and the overall acceptability of sponge cake with superfine MP were 7.90 ± 0.97 and 7.55 ± 0.76, which represents the highest values among the samples. The results of this study have shown that jet milling can contribute to improvements in texture, lutein content, and sensory qualities for baked products with MP.
Collapse
|
6
|
Zhou R, Yang H, Lu T, Zhao Y, Zheng W. Ultraviolet radiation promotes the production of hispidin polyphenols by medicinal mushroom Inonotus obliquus. Fungal Biol 2022; 126:775-785. [PMID: 36517145 DOI: 10.1016/j.funbio.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 01/07/2023]
Abstract
Production of hispidin polyphenols in Inonotus obliquus is a stress-induced response triggered by environmental factors. As one of the important environmental factors, ultraviolet (UV) radiation plays regulatory roles in fungal growth and development. However, whether UV radiation regulates the formation of hispidin polyphenols remains to be established. In this study, we cultivated I. obliquus on solid medium and imposed intermittent UV radiation. We showed that UV exposure inhibited the growth of mycelia but increased the production of polyphenols. Further bioassays revealed that UV radiation also increased the catalytic activities of phenylalanine ammonia-lyase (PAL) and chalcone isomerase (CHI), up-regulated expression of genes related to redox, transcriptional regulation, and metabolism. In addition, the total extracts from the UV-irradiated group were more capable of scavenging DPPH and ABTS+ free radicals, especially at the later stage of culture. Thus, UV radiation, acting as one of the environmental factors, stimulated the accumulation of polyphenols in I. obliquus by regulating the activities of enzymes and the expression of genes related to growth and metabolism, and can be tentatively used as a feasible strategy to enhance the production of polyphenols in I. obliquus.
Collapse
Affiliation(s)
- Rong Zhou
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
| | - Hanbing Yang
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
| | - Ting Lu
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
| | - Yanxia Zhao
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China.
| | - Weifa Zheng
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China.
| |
Collapse
|