1
|
Xue L, Song G, Liu G. Wasted Food, Wasted Resources? A Critical Review of Environmental Impact Analysis of Food Loss and Waste Generation and Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7240-7255. [PMID: 38625096 DOI: 10.1021/acs.est.3c08426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Food loss and waste (FLW) comes with significant environmental impacts and thus prevents a sustainable food system transition. Here we conducted a systematic review of 174 screened studies that assessed the environmental impacts of FLW generation and treatment. We found that the embodied impacts of FLW along the supply chain and impacts from FLW treatment received equal attention, but few studies have included both. The reviewed studies show narrow geographical (mostly conducted in industrialized countries) and food supply chain (mostly focused on the consumption stage) coverage. Life cycle analysis (LCA), material flow analysis (MFA), or their combination are the most commonly used to quantify FLW related environmental impacts. More method standardization, integration, and innovation and better FLW data with regional and stage resolution from a first-hand source are badly needed. Among the various proposed mitigation strategies covering technology, economy, behavior, and policy aspects, process optimization and waste management options are the most discussed. Our review calls for a more holistic environmental impact assessment of FLW generation and treatment and analysis of the trade-offs among different environmental impact categories and between supply chain stages, which would better inform relevant policy on effective environmental impact mitigation strategies toward sustainable food systems.
Collapse
Affiliation(s)
- Li Xue
- College of Economics and Management, China Agricultural University, 100083 Beijing, China
- Academy of Global Food Economics and Policy, China Agricultural University, 100083 Beijing, China
| | - Guobao Song
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Gang Liu
- College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
- Institute of Carbon Neutrality, Peking University, 100871 Beijing, China
| |
Collapse
|
2
|
Bahramian M, Hynds PD, Priyadarshini A. Dynamic life cycle assessment of commercial and household food waste: A critical global review of emerging techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170853. [PMID: 38369144 DOI: 10.1016/j.scitotenv.2024.170853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
DLCA has been applied to several food waste streams, however, to date no critical assessment of its strengths, weaknesses, opportunities, and threats (SWOT) is available in the scientific literature. Accordingly, the present review aims to provide a comprehensive overview of the available literature on DLCA and its application to Household and Commercial Food Waste (HCFW) by providing critical assessment and perspectives for future research. The Population, Intervention, Comparison, and Outcome (PICO) framework for literature review was employed, with just 12 relevant studies identified between 1999 and 2022, highlighting a dearth of research on DLCA of food waste and the need for further research. Identified studies exhibit significant variations with respect to DLCA methodology, boundary settings, and data quality and reporting, with more attention typically given to combining conventional LCA with dynamic characterization models, thus making it difficult to draw conclusive findings or identify consistent trends. Additionally, most identified studies employed DLCA for a specific case study and comparison with traditional LCA outcomes was typically ignored; just one study presented the projected impact from both LCA and DLCA for the entire life cycle of a product. Employed functional/reference units ranged from specific quantities such as 1 kg of refined crystals or syrup, 1 g L-1 Sophorolipid solution, and 1 kg of dry food with packaging material, to broader indicators like 1 kg of biofuel or 1 MJ of primary energy. Monte Carlo simulation was the most frequently employed method for uncertainty analyses within identified studies. Sensitivity analyses were conducted in just 4 studies, but it was not always clearly reported. While DLCA is undoubtedly a more realistic approach to impact assessment, and thus likely more accurate, a need exists for increasingly standardized and regulated versions of DLCA for global and multi-criteria practices.
Collapse
Affiliation(s)
- Majid Bahramian
- Environmental Science & Health Institute, Dublin Institute of Technology, Greenway Hub, Grangegorman, Dublin 7, Dublin/Ireland Dublin Institute of Technology, Dublin, Ireland.
| | - Paul Dylan Hynds
- Environmental Science & Health Institute, Dublin Institute of Technology, Greenway Hub, Grangegorman, Dublin 7, Dublin/Ireland Dublin Institute of Technology, Dublin, Ireland.
| | - Anushree Priyadarshini
- Environmental Science & Health Institute, Dublin Institute of Technology, Greenway Hub, Grangegorman, Dublin 7, Dublin/Ireland Dublin Institute of Technology, Dublin, Ireland; School of Business, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
3
|
Jaiswal AK. Sustainable Utilisation and Management of Food Waste for High-Value Products. Foods 2023; 12:2872. [PMID: 37569141 PMCID: PMC10417811 DOI: 10.3390/foods12152872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Welcome to the Special Issue on "Sustainable Utilisation and Management of Food Waste for High-Value Products" [...].
Collapse
Affiliation(s)
- Amit K. Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin—City Campus, Central Quad, Grangegorman, D07 ADY7 Dublin, Ireland;
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin—City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| |
Collapse
|
4
|
Energy Systems in the Food Supply Chain and in the Food Loss and Waste Valorization Processes: A Systematic Review. ENERGIES 2022. [DOI: 10.3390/en15062234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The intensity in energy consumption due to food production systems represents a major issue in a context of natural resources depletion and an increasing worldwide population. In this framework, at least a third of global food production is being lost or wasted. Moreover, about 38% of the energy embedded in total food production is being lost. Consequently, the assessment of energy consumption in food systems, and in food loss and waste valorization systems, is an increasing trend in recent years. In this line, this work presents a systematic review, selecting 74 articles from a search of 16,930 papers regarding the key words “energy assessment food”. The aim was to determine the current and historical trends in this field of research. Results pointed to a worldwide acceleration in trends since 2014, standing out in China and other Asian countries. Concerning the topics of the publications, energy consumption in the food sector is a research field which has existed since 1979. Moreover, the study of energy valorization systems using food loss and waste is an increasing trend since 2010. Additionally, publications focused on the water–energy–food nexus appeared firstly in 2014 and have grown exponentially. Moreover, life cycle assessment highlights as the most widespread methodology used.
Collapse
|
5
|
Achieving Sustainability of the Seafood Sector in the European Atlantic Area by Addressing Eco-Social Challenges: The NEPTUNUS Project. SUSTAINABILITY 2022. [DOI: 10.3390/su14053054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fisheries and aquaculture are becoming a focus of societal concern driven by globalization and increasing environmental degradation, mainly caused by climate change and marine litter. In response to this problem, the European Atlantic Area NEPTUNUS project aims to support and inform about the sustainability of the seafood sector, boosting the transition towards a circular economy through defining eco-innovation approaches and a steady methodology for eco-labelling products. This timely trans-regional European project proposes key corrective actions for positively influencing resource efficiency by addressing a life cycle thinking and involving all stakeholders in decision-making processes, harnessing the water-energy-seafood nexus. This paper presents inter-related objectives, methodologies and cues to action that will potentially meet these challenges that are aligned with many of the United Nations Sustainable Development Goals and European policy frameworks (e.g., Farm to Fork, European Green Deal).
Collapse
|
6
|
Water Footprint Assessment of Food Loss and Waste Management Strategies in Spanish Regions. SUSTAINABILITY 2021. [DOI: 10.3390/su13147538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The availability of freshwater is one of the biggest limitations and challenges of food production, as freshwater is an increasingly scarce and overexploited resource in many parts of the world. Therefore, the concept of water footprint (WF) has gained increasing interest, in the same way that the generation of food loss and waste (FLW) in food production and consumption has become a social and political concern. Along this line, the number of studies on the WF of the food production sector is currently increasing all over the world, analyzing water scarcity and water degradation as a single WF indicator or as a so-called WF profile. In Spain, there is no study assessing the influence of FLW generation along the whole food supply chain nor is there a study assessing the different FLW management options regarding the food supply chain’s WF. This study aimed to assess the spatially differentiated WF profile for 17 Spanish regions over time, analyzing the potential linkages of FLW management and water scarcity and water degradation. The assessment considered compliance and non-compliance with the Paris Agreement targets and was based on the life cycle assessment approach. Results are highlighted in a compliance framework; the scenarios found that anaerobic digestion and aerobic composting (to a lesser extent) had the lowest burdens, while scenarios with thermal treatment had the highest impact. Additionally, the regions in the north of Spain and the islands were less influenced by the type of FLW management and by compliance with the Paris Agreement targets.
Collapse
|
7
|
Sazdovski I, Bala A, Fullana-I-Palmer P. Linking LCA literature with circular economy value creation: A review on beverage packaging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145322. [PMID: 33548717 DOI: 10.1016/j.scitotenv.2021.145322] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 01/09/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
The ever-increasing volume of packaging waste is widely recognised as a key global environmental challenge. Packaging is thus a central concern for advocates and analysts of circular economy (CEc), who often apply the life cycle assessment (LCA) methodology when measuring the environmental impacts of products and packaging. We undertook a systematic literature review as a research method, and in-depth analysis to ascertain the extent to which the new CEc paradigm has been integrated in LCA methodology applied to beverage packaging and reported in scientific papers. Carefully developed search strings returned 866 articles relevant to our enquiry from the databases of SCOPUS and Web of Science. Applying our selected eligibility criteria, we extracted a subset of 51 articles for in-depth analysis. The analysed literature shows the links between the quality of packaging material for recycling and the profoundness of the LCA studies. The paper provides the following set of recommendations for enhancing the future practice in development of the scientific LCAs for beverage packaging: (i) taking all direct and indirect factors into account when assessing the refillable beverage packaging system and conducting break-even analysis in order to achieve impartial comparative assessments of single-use and refillable systems; (ii) developing proxies in cases when actual data is lacking with which to model the recycling scenarios for exported secondary materials and hence improving the accuracy of recycling rate assessments in LCA models; (iii) improving the definition of the LCA function by introducing multiple loops of the packaging material and assessing qualitative changes in the material resulting from the multiple-recycling process. Thus improved practice of LCAs could better inform and improve the design of new packaging strategies aimed at prolonging the life of packaging materials in the technosphere, equally fulfilling the principles of the CEc.
Collapse
Affiliation(s)
- Ilija Sazdovski
- UNESCO Chair in Life Cycle and Climate Change ESCI, UPF, Passeig Pujades 1, 08003 Barcelona, Spain.
| | - Alba Bala
- UNESCO Chair in Life Cycle and Climate Change ESCI, UPF, Passeig Pujades 1, 08003 Barcelona, Spain.
| | - Pere Fullana-I-Palmer
- UNESCO Chair in Life Cycle and Climate Change ESCI, UPF, Passeig Pujades 1, 08003 Barcelona, Spain.
| |
Collapse
|
8
|
The Potential of Selected Agri-Food Loss and Waste to Contribute to a Circular Economy: Applications in the Food, Cosmetic and Pharmaceutical Industries. Molecules 2021; 26:molecules26020515. [PMID: 33478152 PMCID: PMC7835992 DOI: 10.3390/molecules26020515] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
The food sector includes several large industries such as canned food, pasta, flour, frozen products, and beverages. Those industries transform agricultural raw materials into added-value products. The fruit and vegetable industry is the largest and fastest-growing segment of the world agricultural production market, which commercialize various products such as juices, jams, and dehydrated products, followed by the cereal industry products such as chocolate, beer, and vegetable oils are produced. Similarly, the root and tuber industry produces flours and starches essential for the daily diet due to their high carbohydrate content. However, the processing of these foods generates a large amount of waste several times improperly disposed of in landfills. Due to the increase in the world’s population, the indiscriminate use of natural resources generates waste and food supply limitations due to the scarcity of resources, increasing hunger worldwide. The circular economy offers various tools for raising awareness for the recovery of waste, one of the best alternatives to mitigate the excessive consumption of raw materials and reduce waste. The loss and waste of food as a raw material offers bioactive compounds, enzymes, and nutrients that add value to the food cosmetic and pharmaceutical industries. This paper systematically reviewed literature with different food loss and waste by-products as animal feed, cosmetic, and pharmaceutical products that strongly contribute to the paradigm shift to a circular economy. Additionally, this review compiles studies related to the integral recovery of by-products from the processing of fruits, vegetables, tubers, cereals, and legumes from the food industry, with the potential in SARS-CoV-2 disease and bacterial diseases treatment.
Collapse
|