1
|
Nedviha S, Harasym J. Characteristics of Soft Wheat and Tiger Nut ( Cyperus esculentus) Composite Flour Bread. Foods 2025; 14:229. [PMID: 39856895 PMCID: PMC11764678 DOI: 10.3390/foods14020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 01/27/2025] Open
Abstract
This study investigated the effects of tiger nut flour (TNF) incorporation (5-25%) on wheat-based bread characteristics. Dough rheology analysis revealed optimal gas retention at 10% TNF addition, while higher concentrations decreased dough stability. Physical analysis demonstrated that 10% TNF substitution yielded the highest specific volume (2.4 mL/g) and porosity (67.0%), with significant textural changes observed at higher concentrations. Bioactive compound analysis showed progressive increases in the total polyphenol content and antioxidant activity with increasing TNF levels, particularly in 25% TNF bread (111.31 mg TE/g dm in crumb). Storage studies over 7 days indicated that TNF incorporation affected bread staling characteristics, with 10-15% substitution levels maintaining better textural properties. The results suggest that TNF incorporation up to 15% can enhance bread's nutritional value, while maintaining acceptable technological properties, with 10% substitution showing an optimal balance between functional benefits and bread quality.
Collapse
Affiliation(s)
- Svitlana Nedviha
- Department of Bakery and Confectionary Technology, State Biotechnological University, Alchevskih St. 44, 61002 Kharkiv, Ukraine;
| | - Joanna Harasym
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland
- Adaptive Food Systems Accelerator-Science Centre, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland
| |
Collapse
|
2
|
Edo GI, Samuel PO, Nwachukwu SC, Ikpekoro VO, Promise O, Oghenegueke O, Ongulu J, Otunuya CF, Rapheal OA, Ajokpaoghene MO, Okolie MC, Ajakaye RS. A review on the biological and bioactive components of Cyperus esculentus L.: insight on food, health and nutrition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8414-8429. [PMID: 38769860 DOI: 10.1002/jsfa.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Tiger nut (Cyperus esculentus L.) is a small, tuberous root vegetable that has gained increasing attention in recent years due to its potential health benefits. This review article provides an elaborate overview of tiger nut, including its botany, historical uses, nutritional composition, potential health benefits and traditional medicinal uses. This review article comprehensively discusses the nutritional profile of tiger nut, providing a detailed understanding of its nutrient content. Furthermore, the potential health benefits of tiger nut are thoroughly reviewed, including its effects on digestive health, cardiovascular health, blood sugar control, immune function and other potential therapeutic uses. Scientific articles used for this review were retrieved from ScienceDirect, Google Scholar, PubMed and SciELO databases. Only articles published between 1997 and 2022 were used for research. This review contributes to a better understanding of tiger nut and its prospective uses in functional foods and medicine by combining the available scientific material. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Faculty of Science, Department of Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Princess Oghenekeno Samuel
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Susan Chinedu Nwachukwu
- Faculty of Science, Department of Food Science and Technology, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Victor Ovie Ikpekoro
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Obasohan Promise
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ogheneochuko Oghenegueke
- Faculty of Science, Department of Food Science and Technology, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Jonathan Ongulu
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Chinenye Favour Otunuya
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Opiti Ajiri Rapheal
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Mercy Orezimena Ajokpaoghene
- Faculty of Science, Department of Food Science and Technology, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Michael Chukwuma Okolie
- Faculty of Science, Department of Food Science and Technology, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ruth Sheyi Ajakaye
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| |
Collapse
|
3
|
Nedviha S, Harasym J. Functional and Antioxidative Characteristics of Soft Wheat and Tiger Nut ( Cyperus esculentus) Flours Binary Blends. Foods 2024; 13:596. [PMID: 38397573 PMCID: PMC10887602 DOI: 10.3390/foods13040596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Tiger nut (Cyperus esculentus) or chufa is little known plant of high nutritious content. Popularized by a plant-based drink called "horchata de chufa," it still offers a lot to research, being abundant in fat, starch, fiber and minerals and vitamins. To properly adjust this raw material to new purposes, the knowledge of crucial properties of the most basic blends like with soft wheat flour is needed. This article evaluates the techno-functional, viscometrical and bioactive characteristics of soft wheat:tiger nut blends of 5%, 10%, 15%, 20% and 25%. Granulometry, water-holding capacity (WHC), water absorption capacity (WAC), water absorption index (WAI), water solubility index (WSI), oil absorption capacity (OAC), hydrophilic/lipophilic index (HLI), color, pasting properties, total polyphenol content (TPC), antioxidant activity (DPPH), reducing sugars content and dough-rising capacity were assessed. The addition of tiger nut improved total polyphenol content of blends, however, It was observed that the addition of tiger nuts raised the total polyphenol content of the mixtures, but this was not statistically significant despite as much as 25% of tiger nuts. Oppositely, antioxidant activity was gradually improved with increasing tiger nut content. Pasting properties were impacted by tiger nut addition, lowering both pasting viscosity and trough viscosity, however, final viscosity was not particularly affected, being lowered by less than 15%. The highest water absorption was noted for 100% tiger nut both for WHC and WAC, however, WAI was the lowest for this sample. All the blends with tiger nut revealed improved dough-rising profile.
Collapse
Affiliation(s)
- Svitlana Nedviha
- Department of Bakery and Confectionary Technology, State Biotechnological University, Alchevskih St. 44, 61002 Kharkiv, Ukraine;
| | - Joanna Harasym
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland
- Adaptive Food Systems Accelerator-Science Centre, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland
| |
Collapse
|
4
|
Influence of Partially Substituting Wheat Flour with Tiger Nut Flour on the Physical Properties, Sensory Quality, and Consumer Acceptance of Tea, Sugar, and Butter Bread. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:7892739. [PMID: 36704447 PMCID: PMC9873436 DOI: 10.1155/2023/7892739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023]
Abstract
Tiger nut is a valuable source of fiber, lipids, minerals, and carbohydrates. However, avenues for incorporating tiger nuts into food remain underexplored, especially in several tropical countries where the plant grows well. The current study investigated the effects of partially substituting wheat flour (WF) with tiger nut flour (TNF) on the physical and sensory properties of different bread types to evaluate the more amenable system for tiger nut incorporation. The substitution was done at WF:TNF ratio of 100 : 0, 90 : 10, 85 : 15, 80 : 20, 75 : 25, and 70 : 30 for butter bread (Bb), tea bread (Tb), and sugar bread (Sb). The results show that WF substitution with TNF increased bread brownness and color saturation and decreased lightness, showing the highest impact on Sb, followed by Tb and Bb. Additionally, bread-specific volume decreased significantly after 20% (Bb), 25% (Tb), and 30% (Sb) TNF substitution. Furthermore, substituting WF with 30% TNF increased crumb hardness from approx. 1.87 N to 3.64 N (Bb), 3.46 N to 8.14 N (Tb), and 6.71 N to 11.39 N (Sb) and caused significant increases to 17.80 N (Tb) and 21.08 N (Sb) after 3 d storage. Only a marginal effect on storage hardness (4.32 N) was observed for Bb. Substituting WF with 10% TNF for Bb or 25% TNF for Tb led to significantly higher consumer (N = 56) scores for all attributes and overall acceptability. However, no significant effect on the overall acceptability of Sb was observed. Flash profiling showed frequently used descriptors for Bb as firm, moist, buttery, smooth, and astringent. After 10% TNF substitution, descriptors were chewy, firm, sweet, porous, dry, and caramel, and that of 30% TNF were grainy, chocolate, brown, nutty, and flaky. Substituting WF with TNF increased the lipids, fiber, and minerals content but decreased the protein and carbohydrate contents of bread. TNF substitution led to different physical and sensory effects depending on bread type, showing that Bb with 10% or Tb with 25% TNF is more comparable with the overall acceptance quality of 100% WF. The study is relevant for utilizing tiger nuts as an ingredient in bread products.
Collapse
|
5
|
Bezerra JJL, Feitosa BF, Souto PC, Pinheiro AAV. Cyperus esculentus L. (Cyperaceae): Agronomic aspects, food applications, ethnomedicinal uses, biological activities, phytochemistry and toxicity. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Igual M, Martínez-Monzó J. Physicochemical Properties and Structure Changes of Food Products during Processing. Foods 2022; 11:foods11152365. [PMID: 35954131 PMCID: PMC9368395 DOI: 10.3390/foods11152365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
|
7
|
Téllez‐Morales JA, Hernández‐Santos B, Juárez‐Barrientos JM, Lerdo‐Reyes AA, Rodríguez‐Miranda J. The use of tubers in the development of extruded snacks: A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- José A. Téllez‐Morales
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtepec, Calzada Dr. Víctor Bravo Ahúja, No. 561, Col. Predio el Paraíso, C.P. 68350, Tuxtepec Oaxaca Mexico
| | - Betsabé Hernández‐Santos
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtepec, Calzada Dr. Víctor Bravo Ahúja, No. 561, Col. Predio el Paraíso, C.P. 68350, Tuxtepec Oaxaca Mexico
| | - José M. Juárez‐Barrientos
- Universidad del Papaloapan Campus Loma Bonita/DES Ciencias Agropecuarias. Av. Ferrocarril S/N, C. P. 68400. Loma Bonita Oaxaca Mexico
| | - Alma A. Lerdo‐Reyes
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtepec, Calzada Dr. Víctor Bravo Ahúja, No. 561, Col. Predio el Paraíso, C.P. 68350, Tuxtepec Oaxaca Mexico
| | - Jesús Rodríguez‐Miranda
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtepec, Calzada Dr. Víctor Bravo Ahúja, No. 561, Col. Predio el Paraíso, C.P. 68350, Tuxtepec Oaxaca Mexico
| |
Collapse
|
8
|
Yu Y, Lu X, Zhang T, Zhao C, Guan S, Pu Y, Gao F. Tiger Nut ( Cyperus esculentus L.): Nutrition, Processing, Function and Applications. Foods 2022; 11:foods11040601. [PMID: 35206077 PMCID: PMC8871521 DOI: 10.3390/foods11040601] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
The tiger nut is the tuber of Cyperus esculentus L., which is a high-quality wholesome crop that contains lipids, protein, starch, fiber, vitamins, minerals and bioactive factors. This article systematically reviewed the nutritional composition of tiger nuts; the processing methods for extracting oil, starch and other edible components; the physiochemical and functional characteristics; as well as their applications in food industry. Different extraction methods can affect functional and nutritional properties to a certain extent. At present, mechanical compression, alkaline methods and alkali extraction-acid precipitation are the most suitable methods for the production of its oil, starch and protein in the food industry, respectively. Based on traditional extraction methods, combination of innovative techniques aimed at yield and physiochemical characteristics is essential for the comprehensive utilization of nutrients. In addition, tiger nut has the radical scavenging ability, in vitro inhibition of lipid peroxidation, anti-inflammatory and anti-apoptotic effects and displays medical properties. It has been made to milk, snacks, beverages and gluten-free bread. Despite their ancient use for food and feed and the many years of intense research, tiger nuts and their components still deserve further exploitation on the functional properties, modifications and intensive processing to make them suitable for industrial production.
Collapse
|
9
|
Li C, Ji Y, Li E. Understanding the Influences of Rice Starch Fine Structure and Protein Content on Cooked Rice Texture. STARCH-STARKE 2021. [DOI: 10.1002/star.202100253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Changfeng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou 225009 China
| | - Yi Ji
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou 225009 China
| | - Enpeng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou 225009 China
| |
Collapse
|