1
|
Kobylina T, Novikov A, Sadyrova G, Kyrbassova E, Nazarbekova S, Imanova E, Parmanbekova M, Tynybekov B. The Volatile Compounds Composition of Different Parts of Wild Kazakhstan Sedum ewersii Ledeb. SEPARATIONS 2024; 11:208. [DOI: 10.3390/separations11070208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The chemical composition of Sedum ewersii Ledeb., a plant indigenous to Kazakhstan and traditionally utilized in folk medicine, was comprehensively investigated, with a focus on its various plant parts. Fresh samples collected in May 2023 from the Almaty region underwent hydrodistillation to extract volatile components, followed by analysis using gas chromatography coupled with mass spectrometric detection, which identified a total of 71 compounds across different plant parts, including the root (underground part), root (aerial part), leaf, stem, and flowering aerial part. The predominant biologically active compound identified across all plant parts was Ethyl α-D-glucopyranoside. Monoterpenes, recognized as primary secondary metabolites, were notably abundant in each plant part, with varying compositions: the root (underground part) contained 28.58% aliphatic monoterpenes, 54.41% oxygenated monoterpenoids, 1.42% diterpenoids, and 15.59% other compounds; the root (aerial part) exhibited 1.34% aliphatic monoterpenes, 31.28% oxygenated monoterpenoids, 6.16% diterpenoids, and 61.22% other compounds; the stem and leaves showed 3.06% aliphatic monoterpenes, 21.49% oxygenated monoterpenoids, 17.99% diterpenoids, and 57.46% other compounds; and the flowering aerial part displayed 8.20% aliphatic monoterpenes, 53.18% oxygenated monoterpenoids, 23.75% diterpenoids, and 14.87% other compounds. Diterpenes, particularly Phytol, were prominently present in the leaf, stem, and flowering aerial parts. Additionally, a diverse array of organic acids, ketones, and phenolic compounds were identified across the plant parts, each potentially offering distinct pharmacological benefits. The presence of exclusive compounds in specific plant parts, such as Dihydroxyacetone in the root (aerial part), underscored the pharmacological diversity of S. ewersii. This study provides valuable insights into the chemical diversity and pharmacological potential of S. ewersii, suggesting promising applications in pharmaceutical and medicinal fields. Further research aimed at elucidating the individual and synergistic pharmacological effects of these compounds is crucial to fully harness the therapeutic benefits of this plant.
Collapse
Affiliation(s)
- Tatyana Kobylina
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan
- Laboratory of Pharmacological Research, Institute of Physiology and Genetics, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan
| | - Andriy Novikov
- Department of Biosystematics and Evolution, State Natural History Museum NAS of Ukraine, Teatralna Str. 18, 79008 Lviv, Ukraine
| | - Gulbanu Sadyrova
- Department of Ecology UNESCO for Sustainable Development, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan
| | - Elzira Kyrbassova
- Department of Biology of the Institute of Naatural Sciences, NPJSC, Kazakh Women’s Teacher Training University, A05C9Y7, St. Gogol, Almaty 114 k1, Kazakhstan
| | - Saltanat Nazarbekova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan
| | - Elmira Imanova
- Department of Biology of the Institute of Naatural Sciences, NPJSC, Kazakh Women’s Teacher Training University, A05C9Y7, St. Gogol, Almaty 114 k1, Kazakhstan
| | - Meruyert Parmanbekova
- Department of Biology of the Institute of Naatural Sciences, NPJSC, Kazakh Women’s Teacher Training University, A05C9Y7, St. Gogol, Almaty 114 k1, Kazakhstan
| | - Bekzat Tynybekov
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan
| |
Collapse
|
2
|
Tzortzi I, Joundi I, Kavousanakis M, Spyriouni T, Bampouli A, Michaud G, Van Gerven T, Stefanidis GD. Tailoring Waterborne Coating Rheology with Hydrophobically Modified Ethoxylated Urethanes (HEURs): Molecular Architecture Insights Supported by CG-MD Simulations. Ind Eng Chem Res 2024; 63:10009-10026. [PMID: 38911482 PMCID: PMC11190988 DOI: 10.1021/acs.iecr.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 06/25/2024]
Abstract
A novel investigation of the effects of the hydrophilic and hydrophobic segments of hydrophobically modified ethoxylated urethanes (HEURs) on the rheological properties of their aqueous solutions, latex-based emulsions, and waterborne paints is demonstrated. Different HEUR thickeners were produced by varying the poly(ethylene glycol) (PEG) molecular weight and terminal hydrophobic size. Results reveal that the strength of hydrophobic associations and, consequently, the rheological properties of HEUR formulations can be effectively controlled by modifying the structure of the hydrophobic segment, specifically, the combination of diisocyanate and monoalcohol. This allows for the on-demand attainment of diverse rheological behaviors ranging from predominantly Newtonian profiles exhibiting lower viscosities to markedly pseudoplastic behaviors with significantly higher viscosities. The length of the hydrophilic group appears to affect viscosity only marginally up to a molecular weight of 23,000 g/mol, with more notable effects at 33,000 g/mol. Additionally, it was indicated that the rheological responses observed in water solutions provide a reliable forecast of their behavior in latex-based emulsions and waterborne paints. Coarse-grained molecular dynamics (CG-MD) simulations were also applied to gain insight into HEUR micelle dynamics in aqueous solutions. Guided by the DBSCAN algorithm, the simulations successfully captured the concentration-dependent behavior and the impact of hydrophilic chain length, aligning with the experimental viscosity trends. Various metrics were employed to provide a comprehensive analysis of the micellization process, including the hydrophobic cluster volume, the total micellar volume, the aggregation number, and the number of chains interconnecting with other micelles.
Collapse
Affiliation(s)
- Ioanna Tzortzi
- School
of Chemical Engineering National Technical University of Athens, Iroon Polytecneiou 9, Zografou Campus, Athens 157 80, Greece
| | | | - Michail Kavousanakis
- School
of Chemical Engineering National Technical University of Athens, Iroon Polytecneiou 9, Zografou Campus, Athens 157 80, Greece
| | | | - Ariana Bampouli
- Department
of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | | | - Tom Van Gerven
- Department
of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Georgios D. Stefanidis
- School
of Chemical Engineering National Technical University of Athens, Iroon Polytecneiou 9, Zografou Campus, Athens 157 80, Greece
| |
Collapse
|
3
|
Chavda VP, Dyawanapelly S, Dawre S, Ferreira-Faria I, Bezbaruah R, Rani Gogoi N, Kolimi P, Dave DJ, Paiva-Santos AC, Vora LK. Lyotropic liquid crystalline phases: Drug delivery and biomedical applications. Int J Pharm 2023; 647:123546. [PMID: 37884213 DOI: 10.1016/j.ijpharm.2023.123546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Liquid crystal (LC)-based nanoformulations may efficiently deliver drugs and therapeutics to targeted biological sites. Lyotropic liquid crystalline phases (LLCPs) have received much interest in recent years due to their unique structural characteristics of both isotropic liquids and crystalline solids. These LLCPs can be utilized as promising drug delivery systems to deliver drugs, proteins, peptides and vaccines because of their improved drug loading, stabilization, and controlled drug release. The effects of molecule shape, microsegregation, and chirality are very important in the formation of liquid crystalline phases (LCPs). Homogenization of self-assembled amphiphilic lipids, water and stabilizers produces LLCPs with different types of mesophases, bicontinuous cubic (cubosomes) and inverse hexagonal (hexosomes). Moreover, many studies have also shown higher bioadhesivity and biocompatibility of LCs due to their structural resemblance to biological membranes, thus making them more efficient for targeted drug delivery. In this review, an outline of the engineering aspects of LLCPs and polymer-based LLCPs is summarized. Moreover, it covers parenteral, oral, transdermal delivery and medical imaging of LC in targeting various tissues and is discussed with a scope to design more efficient next-generation novel nanosystems. In addition, a detailed overview of advanced liquid crystal-based drug delivery for vaccines and biomedical applications is reviewed.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380009, India; Department of Pharmaceutics & Pharm. Technology, K. B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, Gujarat, India.
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Shilpa Dawre
- Department of Pharmaceutics, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur, India
| | - Inês Ferreira-Faria
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Niva Rani Gogoi
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Praveen Kolimi
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA
| | - Divyang J Dave
- Department of Pharmaceutics & Pharm. Technology, K. B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, Gujarat, India
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK.
| |
Collapse
|
4
|
Kumar A, Kanika, Kumar V, Ahmad A, Mishra RK, Nadeem A, Siddiqui N, Ansari MM, Raza SS, Kondepudi KK, Khan R. Colon-Adhering Delivery System with Inflammation Responsiveness for Localized Therapy of Experimental Colitis. ACS Biomater Sci Eng 2023; 9:4781-4793. [PMID: 37497615 DOI: 10.1021/acsbiomaterials.3c00480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammation-related disease that severely affects the colon and rectum regions. A variety of therapy regimens are used for the treatment of UC. Clinically, therapeutic enema is the choice of therapy for UC patients. Irrespective of on-site administration, the major limitation of therapeutic enemas is the dispossession of the medicine followed by low drug availability for the therapeutic action. In our present work, we have developed an enzyme-responsive injectable hydrogel (ER-hydrogel) to overcome the limitations of therapeutic enema. The hydrogels possess two major advantages, which are being exploited for therapeutic drug delivery in UC: prolonged retention and enzyme responsiveness. The former is one of the prominent advantages of hydrogel compared to free drug enema and the latter controls the release of the drug or provides drug release on-demand. The ER-hydrogel was formulated by the heat-cool method and for therapeutic purposes, a corticosteroid drug, budesonide (Bud), was encapsulated into the ER-hydrogel and evaluated for its various physicochemical and therapeutic potentials in dextran sodium sulfate (DSS)-induced UC. In vitro and ex vivo adhesion studies confirm the retention or mucoadhesive nature of the ER-hydrogel, and the upsurge in Bud release from the Bud-loaded ER-hydrogel upon the addition of esterase enzyme confirms the enzyme-mediated drug release from the ER-hydrogel. Moreover, Bud-loaded ER-hydrogel exhibited promising results in alleviating the disease activity index of UC, and restored the length of the colon, which is the main hallmark of UC. In terms of the health of the colon tissue, the Bud-loaded ER-hydrogel restored the colonic tissue damage, as seen in the H&E-stained, AB-NR-stained, and HID-AB-stained colon sections. Finally, the Bud-loaded ER-hydrogel also markedly subsided the IL-1β, TNF-α, MPO, and nitrite levels in serum and colon tissues. Thus, the fabricated Bud-loaded ER-hydrogel possesses appreciable translational potential due to its ability to significantly ameliorate inflammatory changes compared to naive or water-based therapeutic enema in acute experimental colitis in mice.
Collapse
Affiliation(s)
- Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Vibhu Kumar
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Rakesh Kumar Mishra
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nahid Siddiqui
- Amity Institute of Biotechnology, Amity University, Noida 201303, India
| | - Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Syed Shadab Raza
- Department of Stem Cell Biology and Regenerative Medicine, Era University, Sarfarazganj, Lucknow 226003, India
| | | | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
5
|
Hafeez S, Aldana AA, Duimel H, Ruiter FAA, Decarli MC, Lapointe V, van Blitterswijk C, Moroni L, Baker MB. Molecular Tuning of a Benzene-1,3,5-Tricarboxamide Supramolecular Fibrous Hydrogel Enables Control over Viscoelasticity and Creates Tunable ECM-Mimetic Hydrogels and Bioinks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207053. [PMID: 36858040 DOI: 10.1002/adma.202207053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/13/2023] [Indexed: 06/16/2023]
Abstract
Traditional synthetic covalent hydrogels lack the native tissue dynamics and hierarchical fibrous structure found in the extracellular matrix (ECM). These dynamics and fibrous nanostructures are imperative in obtaining the correct cell/material interactions. Consequently, the challenge to engineer functional dynamics in a fibrous hydrogel and recapitulate native ECM properties remains a bottle-neck to biomimetic hydrogel environments. Here, the molecular tuning of a supramolecular benzene-1,3,5-tricarboxamide (BTA) hydrogelator via simple modulation of hydrophobic substituents is reported. This tuning results in fibrous hydrogels with accessible viscoelasticity over 5 orders of magnitude, while maintaining a constant equilibrium storage modulus. BTA hydrogelators are created with systematic variations in the number of hydrophobic carbon atoms, and this is observed to control the viscoelasticity and stress-relaxation timescales in a logarithmic fashion. Some of these BTA hydrogels are shear-thinning, self-healing, extrudable, and injectable, and can be 3D printed into multiple layers. These hydrogels show high cell viability for chondrocytes and human mesenchymal stem cells, establishing their use in tissue engineering applications. This simple molecular tuning by changing hydrophobicity (with just a few carbon atoms) provides precise control over the viscoelasticity and 3D printability in fibrillar hydrogels and can be ported onto other 1D self-assembling structures. The molecular control and design of hydrogel network dynamics can push the field of supramolecular chemistry toward the design of new ECM-mimicking hydrogelators for numerous cell-culture and tissue-engineering applications and give access toward highly biomimetic bioinks for bioprinting.
Collapse
Affiliation(s)
- Shahzad Hafeez
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Ana A Aldana
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Hans Duimel
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Floor A A Ruiter
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Monize Caiado Decarli
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Vanessa Lapointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Clemens van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
6
|
Zhang Z, Li X, Do C, Kohane DS. Enhancement of polymer thermoresponsiveness and drug delivery across biological barriers by addition of small molecules. Heliyon 2023; 9:e16923. [PMID: 37484344 PMCID: PMC10360936 DOI: 10.1016/j.heliyon.2023.e16923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
Thermoresponsive polymers that undergo sol-gel transitions in the physiological temperature range have been widely used in biomedical applications. However, some commercially and clinically available thermoresponsive materials, particularly poloxamer 407 (P407), have the significant drawback of insufficient gel strength, which limit their performance. Furthermore, co-delivery with some small molecules, including chemical permeation enhancers (CPEs) can further impair the physical properties of P407. Here, we have developed a thermoresponsive platform by combination of CPEs with the poloxamer P188 to enable gelation at physiological temperatures and enhance gel strength. P188 gels at 60 °C, which is far above the physiological range. In combination with limonene (LIM) and sodium dodecyl sulfate (SDS), P188 gels at ∼25 °C, a temperature that in useful for biomedical applications. Gelation behavior was studied by small angle neutron scattering (SANS) experiments, which identified micelle-to-cubic mesophase transitions with increasing temperature. Analysis of the SANS intensities revealed that P188 micelles became larger as LIM or SDS molecules were incorporated, making it easier to form a micellar gel structure. P188-3CPE (i.e., 2% LIM, 1% SDS and 0.5% bupivacaine (BUP)) had low viscosity at room temperature, facilitating administration, but rapidly gelled at body temperature. P188-3CPE enabled the flux of the antibiotic ciprofloxacin across the TM and completely eradicated otitis media from nontypable Haemophilus influenzae (NTHi) in chinchillas after a single administration.
Collapse
Affiliation(s)
- Zipei Zhang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiyu Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Daniel S. Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
7
|
Nichifor M. Role of Hydrophobic Associations in Self-Healing Hydrogels Based on Amphiphilic Polysaccharides. Polymers (Basel) 2023; 15:polym15051065. [PMID: 36904306 PMCID: PMC10005649 DOI: 10.3390/polym15051065] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Self-healing hydrogels have the ability to recover their original properties after the action of an external stress, due to presence in their structure of reversible chemical or physical cross-links. The physical cross-links lead to supramolecular hydrogels stabilized by hydrogen bonds, hydrophobic associations, electrostatic interactions, or host-guest interactions. Hydrophobic associations of amphiphilic polymers can provide self-healing hydrogels with good mechanical properties, and can also add more functionalities to these hydrogels by creating hydrophobic microdomains inside the hydrogels. This review highlights the main general advantages brought by hydrophobic associations in the design of self-healing hydrogels, with a focus on hydrogels based on biocompatible and biodegradable amphiphilic polysaccharides.
Collapse
Affiliation(s)
- Marieta Nichifor
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania
| |
Collapse
|
8
|
Gradzielski M. Polymer-Surfactant Interaction for Controlling the Rheological Properties of Aqueous Surfactant Solutions. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Rub MA, Azum N, Kumar D, Asiri AM. Interaction of TX-100 and Antidepressant Imipramine Hydrochloride Drug Mixture: Surface Tension, 1H NMR, and FT-IR Investigation. Gels 2022; 8:gels8030159. [PMID: 35323272 PMCID: PMC8955380 DOI: 10.3390/gels8030159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/21/2022] Open
Abstract
Interfacial interaction amongst the antidepressant drug-imipramine hydrochloride (IMP) and pharmaceutical excipient (triton X-100 (TX-100-nonionic surfactant)) mixed system of five various ratios in dissimilar media (H2O/50 mmol·kg−1 NaCl/250 mmol·kg−1 urea) was investigated through the surface tension method. In addition, in the aqueous solution, the 1H-NMR, as well as FT-IR studies of the studied pure and mixed system were also explored and deliberated thoroughly. In NaCl media, properties of pure/mixed interfacial surfaces enhanced as compared with the aqueous system, and consequently the synergism/attractive interaction among constituents (IMP and TX-100) grew, whereas in urea (U) media a reverse effect was detected. Surface excess concentration (Γmax), composition of surfactant at mixed monolayer (X1σ), activity coefficient (f1σ (TX-100) and f2σ (IMP)), etc. were determined and discussed thoroughly. At mixed interfacial surfaces interaction, parameter (βσ) reveals the attractive/synergism among the components. The Gibbs energy of adsorption (ΔGadso) value attained was negative throughout all employed media viewing the spontaneity of the adsorption process. The 1H NMR spectroscopy was also employed to examine the molecular interaction of IMP and TX-100 in an aqueous system. FT-IR method as well illustrated the interaction amongst the component. The findings of the current study proposed that TX-100 surfactant could act as an efficient drug delivery vehicle for an antidepressant drug. Gels can be used as drug dosage forms due to recent improvements in the design of surfactant systems. Release mechanism of drugs from surfactant/polymer gels is dependent upon the microstructures of the gels and the state of the drugs within the system.
Collapse
Affiliation(s)
- Malik Abdul Rub
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.); (A.M.A.)
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (M.A.R.); (D.K.)
| | - Naved Azum
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.); (A.M.A.)
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Dileep Kumar
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Correspondence: (M.A.R.); (D.K.)
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.); (A.M.A.)
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Shibata M, Terashima T, Koga T. Micellar Aggregation and Thermogelation of Amphiphilic Random Copolymers in Water Hierarchically Dependent on Chain Length. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Ahmed MF, Abdul Rub M, Joy MTR, Molla MR, Azum N, Anamul Hoque M. Influences of NaCl and Na 2SO 4 on the Micellization Behavior of the Mixture of Cetylpyridinium Chloride + Polyvinyl Pyrrolidone at Several Temperatures. Gels 2022; 8:62. [PMID: 35049597 PMCID: PMC8775105 DOI: 10.3390/gels8010062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Herein, the conductivity measurement technique is used to determine the interactions that may occur between polyvinyl pyrrolidone (PVP) polymer and cetylpyridinium chloride (CPC) surfactant in the presence of NaCl and Na2SO4 of fixed concentration at variable temperatures (298.15-323.15 K) with an interval of 5 K. In the absence or presence of salts, we observed three critical micelle concentrations (CMC) for the CPC + PVP mixture. In all situations, CMC1 values of CPC + PVP system were found to be higher in water than in attendance of salts (NaCl and Na2SO4). Temperature and additives have the tendency to affect counterion binding values. Various physico-chemical parameters were analyzed and demonstrated smoothly, including free energy (ΔG0m), enthalpy (ΔH0m) and entropy change (ΔS0m). The micellization process is achieved to be spontaneous based on the obtained negative ΔG0m values. The linearity of the ΔHmo and ΔSmo values is excellent. The intrinsic enthalpy gain (ΔH0*m) and compensation temperature (Tc) were calculated and discussed with logical points. Interactions of polymer hydrophobic chains or the polymer + surfactant associated with amphiphilic surface-active drugs can employ a strong impact on the behavior of the gels.
Collapse
Affiliation(s)
- Md. Farid Ahmed
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (M.F.A.); (M.R.M.); (M.A.H.)
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Malik Abdul Rub
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md. Tuhinur R. Joy
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - Mohammad Robel Molla
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (M.F.A.); (M.R.M.); (M.A.H.)
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Naved Azum
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md. Anamul Hoque
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (M.F.A.); (M.R.M.); (M.A.H.)
| |
Collapse
|
12
|
Kangarlou B, Dahanayake R, Martin IJ, Ndaya D, Wu CM, Kasi RM, Dormidontova EE, Nieh MP. Flower-like Micelles of Polyethylene Oxide End-Capped with Cholesterol. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Behrad Kangarlou
- Materials Science Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Rasika Dahanayake
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ian J. Martin
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Dennis Ndaya
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Chun-Ming Wu
- The Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, New South Wales 2234, Australia
| | - Rajeswari M. Kasi
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Elena E. Dormidontova
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Mu-Ping Nieh
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
13
|
Agrawal NR, Omarova M, Burni F, John VT, Raghavan SR. Spontaneous Formation of Stable Vesicles and Vesicle Gels in Polar Organic Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7955-7965. [PMID: 34169719 DOI: 10.1021/acs.langmuir.1c00628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The self-assembly of lipids into nanoscale vesicles (liposomes) is routinely accomplished in water. However, reports of similar vesicles in polar organic solvents like glycerol, formamide, and ethylene glycol (EG) are scarce. Here, we demonstrate the formation of nanoscale vesicles in glycerol, formamide, and EG using the common phospholipid lecithin (derived from soy). The samples we study are simple binary mixtures of lecithin and the solvent, with no additional cosurfactants or salt. Lecithin dissolves readily in the solvents and spontaneously gives rise to viscous fluids at low lipid concentrations (∼2-4%), with structures ∼200 nm detected by dynamic light scattering. At higher concentrations (>10%), lecithin forms clear gels that are strongly birefringent at rest. Dynamic rheology confirms the elastic response of gels, with their elastic modulus being ∼20 Pa at ∼10% lipid. Images from cryo-scanning electron microscopy (cryo-SEM) indicate that concentrated samples are "vesicle gels," where multilamellar vesicles (MLVs, also called "onions"), with diameters between 50 and 600 nm, are close-packed across the sample volume. This structure can explain both the elastic rheology as well as the static birefringence of the samples. The discovery of vesicles and vesicle gels in polar solvents widens the scope of systems that can be created by self-assembly. Interestingly, it is much easier to form vesicles in polar solvents than in water, and the former are stable indefinitely, whereas the latter tend to aggregate or coalesce over time. The stability is attributed to refractive index-matching between lipid bilayers and the solvents, i.e., these vesicles are relatively "invisible" and thus experience only weak attractions. The ability to use lipids (which are "green" or eco-friendly molecules derived from renewable natural sources) to thicken and form gels in polar solvents could also prove useful in a variety of areas, including cosmetics, pharmaceuticals, and lubricants.
Collapse
Affiliation(s)
- Niti R Agrawal
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Marzhana Omarova
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Faraz Burni
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Vijay T John
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Srinivasa R Raghavan
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
14
|
Preparation and thermo-physical properties of stable graphene/water nanofluids for thermal management. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
MacIntire IC, Dowling MB, Raghavan SR. How Do Amphiphilic Biopolymers Gel Blood? An Investigation Using Optical Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8357-8366. [PMID: 32678610 DOI: 10.1021/acs.langmuir.0c00409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amphiphilic biopolymers such as hydrophobically modified chitosan (hmC) have been shown to convert liquid blood into elastic gels. This interesting property could make hmC useful as a hemostatic agent in treating severe bleeding. The mechanism for blood gelling by hmC is believed to involve polymer-cell self-assembly, i.e., insertion of hydrophobic side chains from the polymer into the lipid bilayers of blood cells, thereby creating a network of cells bridged by hmC. Here, we probe the above mechanism by studying dilute mixtures of blood cells and hmC in situ using optical microscopy. Our results show that the presence of hydrophobic side chains on hmC induces significant clustering of blood cells. The extent of clustering is quantified from the images in terms of the area occupied by the 10 largest clusters. Clustering increases as the fraction of hydrophobic side chains increases; conversely, clustering is negligible in the case of the parent chitosan that lacks hydrophobes. Moreover, the longer the hydrophobic side chains, the greater the clustering (i.e., C12 > C10 > C8 > C6). Clustering is negligible at low hmC concentrations but becomes substantial above a certain threshold. Finally, clustering due to hmC can be reversed by adding the supramolecule α-cyclodextrin, which is known to capture hydrophobes in its binding pocket. Overall, the results from this work are broadly consistent with the earlier mechanism, albeit with a few modifications.
Collapse
Affiliation(s)
- Ian C MacIntire
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Matthew B Dowling
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Srinivasa R Raghavan
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
16
|
Kerscher B, Trötschler TM, Pásztói B, Gröer S, Szabó Á, Iván B, Mülhaupt R. Thermoresponsive Polymer Ionic Liquids and Nanostructured Hydrogels Based upon Amphiphilic Polyisobutylene-b-poly(2-ethyl-2-oxazoline) Diblock Copolymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00296] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin Kerscher
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
| | - Tobias M. Trötschler
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Balázs Pásztói
- Polymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- George Hevesy PhD School of Chemistry, Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter sétány 2, H-1117 Budapest, Hungary
| | - Saskia Gröer
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Ákos Szabó
- Polymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Béla Iván
- Polymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Rolf Mülhaupt
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| |
Collapse
|
17
|
Affiliation(s)
- Clemens K Weiss
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Berlinstrasse 109, 55411 Bingen, Germany.
| |
Collapse
|