1
|
Thaden O, Schneider N, Walther T, Spiller E, Taoum A, Göpfrich K, Duarte Campos D. Bioprinting of Synthetic Cell-like Lipid Vesicles to Augment the Functionality of Tissues after Manufacturing. ACS Synth Biol 2024; 13:2436-2446. [PMID: 39025476 PMCID: PMC11334175 DOI: 10.1021/acssynbio.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024]
Abstract
Bioprinting is an automated bioassembly method that enables the formation of human tissue-like constructs to restore or replace damaged tissues. Regardless of the employed bioprinting method, cells undergo mechanical stress that can impact their survival and function postprinting. In this study, we investigate the use of a synthetic cell-like unit, giant unilamellar vesicles (GUVs), as adjuvants of the cellular function of human cells postprinting, or in future as the complete replacement of human cells. We analyzed the impact of two nozzle-based bioprinting methods (drop-on-demand and extrusion bioprinting) on the structure, stability, and function of GUVs. We showed that over 65% of the GUVs remain intact when printing at 0.5 bar, demonstrating the potential of using GUVs as a synthetic cell source. We further increased the stability of GUVs in a cell culture medium by introducing polyethylene glycol (PEG) into the GUV lipid membrane. The presence of PEG, however, diminished the structural properties of GUVs postprinting, and reduced the interaction of GUVs with human cells. Although the design of PEG-GUVs can still be modified in future studies for better cell-GUV interactions, we demonstrated that GUVs are functional postprinting. Chlorin e6-PEG-GUVs loaded with a fluorescent dye were bioprinted, and they released the dye postprinting only upon illumination. This is a new strategy to deliver carriers, such as growth factors, drugs, nutrients, or gases, inside large bioprinted specimens on a millimeter to centimeter scale. Overall, we showed that printed GUVs can augment the functionality of manufactured human tissues.
Collapse
Affiliation(s)
- Ole Thaden
- Bioprinting
& Tissue Engineering Group, Center for
Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Nicole Schneider
- Bioprinting
& Tissue Engineering Group, Center for
Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Tobias Walther
- Biophysical
Engineering of Life Group, Center for Molecular
Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
- Max
Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Erin Spiller
- Bioprinting
& Tissue Engineering Group, Center for
Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Alexandre Taoum
- Bioprinting
& Tissue Engineering Group, Center for
Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Kerstin Göpfrich
- Biophysical
Engineering of Life Group, Center for Molecular
Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
- Max
Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Daniela Duarte Campos
- Bioprinting
& Tissue Engineering Group, Center for
Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| |
Collapse
|
2
|
Verma S, Khanna V, Kumar S, Kumar S. The Art of Building Living Tissues: Exploring the Frontiers of Biofabrication with 3D Bioprinting. ACS OMEGA 2023; 8:47322-47339. [PMID: 38144142 PMCID: PMC10734012 DOI: 10.1021/acsomega.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/11/2023] [Indexed: 12/26/2023]
Abstract
The scope of three-dimensional printing is expanding rapidly, with innovative approaches resulting in the evolution of state-of-the-art 3D bioprinting (3DbioP) techniques for solving issues in bioengineering and biopharmaceutical research. The methods and tools in 3DbioP emphasize the extrusion process, bioink formulation, and stability of the bioprinted scaffold. Thus, 3DbioP technology augments 3DP in the biological world by providing technical support to regenerative therapy, drug delivery, bioengineering of prosthetics, and drug kinetics research. Besides the above, drug delivery and dosage control have been achieved using 3D bioprinted microcarriers and capsules. Developing a stable, biocompatible, and versatile bioink is a primary requisite in biofabrication. The 3DbioP research is breaking the technical barriers at a breakneck speed. Numerous techniques and biomaterial advancements have helped to overcome current 3DbioP issues related to printability, stability, and bioink formulation. Therefore, this Review aims to provide an insight into the technical challenges of bioprinting, novel biomaterials for bioink formulation, and recently developed 3D bioprinting methods driving future applications in biofabrication research.
Collapse
Affiliation(s)
- Saurabh Verma
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Vikram Khanna
- Department
of Oral Medicine and Radiology, King George’s
Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Smita Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Sumit Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| |
Collapse
|
3
|
Advances in nanoenabled 3D matrices for cartilage repair. Acta Biomater 2022; 150:1-21. [PMID: 35902038 DOI: 10.1016/j.actbio.2022.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
Cartilage repair strategies are evolving at a fast pace with technology development. Matrices that offer multifaceted functions and a full adaption to the cartilage defect are of pivotal interest. Current cartilage repair strategies face numerous challenges, mostly related to the development of highly biomimetic materials, non-invasive injectable solutions, and adequate degradation rates. These strategies often fail due to feeble mechanical properties, the inability to sustain cell adhesion, growth, and differentiation or by underestimating other players of cartilage degeneration, such as the installed pro-inflammatory microenvironment. The integration of nanomaterials (NMs) into 3D scaffolds, hydrogels and bioinks hold great potential in the improvement of key features of materials that are currently applied in cartilage tissue engineering strategies. NMs offer a high surface to volume ratio and their multiple applications can be explored to enhance cartilage mechanical properties, biocompatibility, cell differentiation, inflammation modulation, infection prevention and even to function as diagnostic tools or as stimuli-responsive cues in these 3D structures. In this review, we have critically reviewed the latest advances in the development of nanoenabled 3D matrices - enhanced by means of NMs - in the context of cartilage regeneration. We have provided a wide perspective of the synergistic effect of combining 3D strategies with NMs, with emphasis on the benefits brought by NMs in achieving functional and enhanced therapeutic outcomes. STATEMENT OF SIGNIFICANCE: Cartilage is one of the most challenging tissues to treat owing to its limited self-regeneration potential. Novel strategies using nanoenabled 3D matrices have emerged from the need to design more efficient solutions for cartilage repair, that take into consideration its unique mechanical properties and can direct specific cell behaviours. Here we aim to provide a comprehensive review on the synergistic effects of 3D matrices nanoenrichment in the context of cartilage regeneration, with emphasis on the heightening brought by nanomaterials in achieving functional and enhanced therapeutic outcomes. We anticipate this review to provide a wide perspective on the past years' research on the field, demonstrating the great potential of these approaches in the treatment and diagnosis of cartilage-related disorders.
Collapse
|
4
|
Budharaju H, Zennifer A, Sethuraman S, Paul A, Sundaramurthi D. Designer DNA biomolecules as a defined biomaterial for 3D bioprinting applications. MATERIALS HORIZONS 2022; 9:1141-1166. [PMID: 35006214 DOI: 10.1039/d1mh01632f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
DNA has excellent features such as the presence of functional and targeted molecular recognition motifs, tailorability, multifunctionality, high-precision molecular self-assembly, hydrophilicity, and outstanding biocompatibility. Due to these remarkable features, DNA has emerged as a leading next-generation biomaterial of choice to make hydrogels by self-assembly. In recent times, novel routes for the chemical synthesis of DNA, advances in tailorable designs, and affordable production ways have made DNA as a building block material for various applications. These advanced features have made researchers continuously explore the interesting properties of pure and hybrid DNA for 3D bioprinting and other biomedical applications. This review article highlights the topical advancements in the use of DNA as an ideal bioink for the bioprinting of cell-laden three-dimensional tissue constructs for regenerative medicine applications. Various bioprinting techniques and emerging design approaches such as self-assembly, nucleotide sequence, enzymes, and production cost to use DNA as a bioink for bioprinting applications are described. In addition, various types and properties of DNA hydrogels such as stimuli responsiveness and mechanical properties are discussed. Further, recent progress in the applications of DNA in 3D bioprinting are emphasized. Finally, the current challenges and future perspectives of DNA hydrogels in 3D bioprinting and other biomedical applications are discussed.
Collapse
Affiliation(s)
- Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|