1
|
Sardelli L, Campanile M, Boeri L, Donnaloja F, Fanizza F, Perottoni S, Petrini P, Albani D, Giordano C. A novel on-a-chip system with a 3D-bioinspired gut mucus suitable to investigate bacterial endotoxins dynamics. Mater Today Bio 2024; 24:100898. [PMID: 38204482 PMCID: PMC10776420 DOI: 10.1016/j.mtbio.2023.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024] Open
Abstract
The possible pathogenic impact of pro-inflammatory molecules produced by the gut microbiota is one of the hypotheses considered at the basis of the biomolecular dialogue governing the microbiota-gut-brain axis. Among these molecules, lipopolysaccharides (LPS) produced by Gram-negative gut microbiota strains may have a potential key role due to their toxic effects in both the gut and the brain. In this work, we engineered a new dynamic fluidic system, the MINERVA device (MI-device), with the potential to advance the current knowledge of the biological mechanisms regulating the microbiota-gut molecular crosstalk. The MI-device supported the growth of bacteria that are part of the intestinal microbiota under dynamic conditions within a 3D moving mucus model, with features comparable to the physiological conditions (storage modulus of 80 ± 19 Pa, network mesh size of 41 ± 3 nm), without affecting their viability (∼ 109 bacteria/mL). The integration of a fluidically optimized and user-friendly design with a bioinspired microenvironment enabled the sterile extraction and quantification of the LPS produced within the mucus by bacteria (from 423 ± 34 ng/mL to 1785 ± 91 ng/mL). Compatibility with commercially available Transwell-like inserts allows the user to precisely control the transport phenomena that occur between the two chambers by selecting the pore density of the insert membrane without changing the design of the system. The MI-device is able to provide the flow of sterile medium enriched with LPS directly produced by bacteria, opening up the possibility of studying the effects of bacteria-derived molecules on cells in depth, as well as the assessment and characterization of their effects in a physiological or pathological scenario.
Collapse
Affiliation(s)
- L. Sardelli
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - M. Campanile
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - L. Boeri
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - F. Donnaloja
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - F. Fanizza
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - S. Perottoni
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - P. Petrini
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - D. Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - C. Giordano
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| |
Collapse
|
2
|
D'Aniello A, Koshenaj K, Ferrari G. A Preliminary Study on the Release of Bioactive Compounds from Rice Starch Hydrogels Produced by High-Pressure Processing (HPP). Gels 2023; 9:521. [PMID: 37504400 PMCID: PMC10379274 DOI: 10.3390/gels9070521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023] Open
Abstract
This work aimed to carry out a preliminary study on the release of bioactive compounds loaded into starch-based hydrogels produced by high-pressure processing (HPP). As a study case, the experiments were carried out on rice starch HPP hydrogels. Rice starch (20% w/w) and green tea extract (2% w/w), suspended in distilled water, were treated by HPP at processing conditions enabling starch gelatinisation, namely 600 MPa for 15 min at room temperature. Additional experiments were carried out on samples that were further loaded with glycerol (5% w/w). Gel formation was assessed by analysing the gelatinisation extent, structuring level, and swelling power of the samples. At the processing conditions utilised, stable hydrogels were obtained even in the presence of the extract and/or the glycerol in the starch suspension. As expected, the colour of the hydrogels formed was affected by the addition of green tea extract in the starch solution. HPP starch hydrogels were characterised by Fourier transform infrared spectroscopy (FT-IR) to determine the interactions between the different compounds utilised in the formulation. Moreover, the release kinetics of bioactive compounds from HPP rice starch hydrogels was evaluated using a vertical Franz diffusion cells system, simulating a transdermal pattern. The diffusion of bioactive compounds was measured spectrophotometrically and via HPLC analysis. A controlled release of bioactive compounds from the hydrogel structure was detected, suggesting that small molecules, such as polyphenols, positively interacted with the rice starch HPP hydrogel network that allowed a smooth and constant release of these bioactive compounds over time.
Collapse
Affiliation(s)
- Anna D'Aniello
- ProdAl Scarl, c/o University of Salerno, 84084 Fisciano, Italy
| | - Katerina Koshenaj
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy
| | - Giovanna Ferrari
- ProdAl Scarl, c/o University of Salerno, 84084 Fisciano, Italy
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
3
|
Wong LL, Mugunthan S, Kundukad B, Ho JCS, Rice SA, Hinks J, Seviour T, Parikh AN, Kjelleberg S. Microbial biofilms are shaped by the constant dialogue between biological and physical forces in the extracellular matrix. Environ Microbiol 2023; 25:199-208. [PMID: 36502515 DOI: 10.1111/1462-2920.16306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Lan Li Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sudarsan Mugunthan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Binu Kundukad
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - James Chin Shing Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, Singapore
| | - Scott A Rice
- CSIRO, Agriculture and Food, Microbiomes for One Systems Health, Canberra, Australia
| | - Jamie Hinks
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Thomas Seviour
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,WATEC Aarhus University Centre for Water Technology, Aarhus, Denmark
| | - Atul N Parikh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, Singapore.,Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
4
|
Sardelli L, Tunesi M, Briatico-Vangosa F, Petrini P. 3D-Reactive printing of engineered alginate inks. SOFT MATTER 2021; 17:8105-8117. [PMID: 34525160 DOI: 10.1039/d1sm00604e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alginate is a common component of bioinks due to its well-described ionic crosslinking mechanism and tunable viscoelastic properties. Extrusion-based 3D-printing of alginate inks requires additives, such as gelatin and Pluronic, pre- or post-printing crosslinking processes and/or coextrusion with crosslinkers. In this work, we aim to develop a different printing approach for alginate-based inks, introducing 3D-reactive printing. Indeed, the control over the crosslinking kinetics and the printing time allowed printing different inks while maintaining their final composition unaltered to identify a suitable formulation in terms of printability. Alginate solutions were crosslinked with insoluble calcium salts (CaCO3) inducing a dynamic modification of their microstructure and viscoelastic properties over time. The monitoring of fiber printability and internal microstructure, at different time points of ink gelation, was performed by means of a well-defined set of rheological tests to obtain a priori ink properties for the a posteriori 3D-printing process. This new perspective allowed 3D-reactive printing of alginate fibers with predetermined properties, without involving post-extrusion crosslinking steps and additives.
Collapse
Affiliation(s)
- Lorenzo Sardelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Marta Tunesi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Francesco Briatico-Vangosa
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Paola Petrini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| |
Collapse
|
5
|
Pan A, Roy SG, Haldar U, Mahapatra RD, Harper GR, Low WL, De P, Hardy JG. Uptake and Release of Species from Carbohydrate Containing Organogels and Hydrogels. Gels 2019; 5:gels5040043. [PMID: 31575001 PMCID: PMC6955889 DOI: 10.3390/gels5040043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/01/2019] [Accepted: 09/24/2019] [Indexed: 11/23/2022] Open
Abstract
Hydrogels are used for a variety of technical and medical applications capitalizing on their three-dimensional (3D) cross-linked polymeric structures and ability to act as a reservoir for encapsulated species (potentially encapsulating or releasing them in response to environmental stimuli). In this study, carbohydrate-based organogels were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of a β-D-glucose pentaacetate containing methacrylate monomer (Ac-glu-HEMA) in the presence of a di-vinyl cross-linker; these organogels could be converted to hydrogels by treatment with sodium methoxide (NaOMe). These materials were studied using solid state 13C cross-polarization/magic-angle spinning (CP/MAS) NMR, Fourier transform infrared (FTIR) spectroscopy, and field emission scanning electron microscopy (FE-SEM). The swelling of the gels in both organic solvents and water were studied, as was their ability to absorb model bioactive molecules (the cationic dyes methylene blue (MB) and rhodamine B (RhB)) and absorb/release silver nitrate, demonstrating such gels have potential for environmental and biomedical applications.
Collapse
Affiliation(s)
- Abhishek Pan
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Nadia 741246, West Bengal, India.
- Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, UK.
- School of Pharmacy, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
| | - Saswati G Roy
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Nadia 741246, West Bengal, India.
| | - Ujjal Haldar
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Nadia 741246, West Bengal, India.
| | - Rita D Mahapatra
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Nadia 741246, West Bengal, India.
| | - Garry R Harper
- Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, UK.
| | - Wan Li Low
- School of Pharmacy, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Nadia 741246, West Bengal, India.
| | - John G Hardy
- Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, UK.
- Materials Science Institute, Lancaster University, Lancaster, Lancashire, LA1 4YB, UK.
| |
Collapse
|