1
|
Sim YS, Wong LC, Yeoh SC, Almashhadani A, Alrimawi BH, Goh CF. Skin penetration enhancers: Mechanistic understanding and their selection for formulation and design. Drug Deliv Transl Res 2025:10.1007/s13346-025-01809-9. [PMID: 39982640 DOI: 10.1007/s13346-025-01809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 02/22/2025]
Abstract
The skin functions as a formidable barrier, particularly the stratum corneum, effectively restricting the penetration of most substances, including therapeutic agents. To circumvent this barrier, skin penetration enhancers (SPEs) are frequently employed to transiently increase skin permeability, facilitating drug absorption without causing irritation or damage. Despite advancements in dermal formulation development, a deeper understanding of the fundamental science underpinning drug delivery via SPEs remains essential. This review delivers a critical update on conventional SPEs, exploring their mechanisms in promoting drug permeation across the skin. In addition to offering an overview of percutaneous drug delivery, we examine the prevailing theories on how SPEs enhance drug transport. Furthermore, we address the intricate interplay between SPEs, drugs and the skin, providing valuable insights into how the molecular properties and permeation behaviours of SPEs influence their efficacy. This comprehensive review aims to support the ongoing development of optimised drug delivery systems for dermal applications by elucidating the complexities and challenges involved in using SPEs effectively.
Collapse
Affiliation(s)
- Yee Shan Sim
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Li Ching Wong
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Soo Chin Yeoh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Abdulsalam Almashhadani
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Bilal Harieth Alrimawi
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
2
|
Krchňák D, Balážová Ľ, Hanko M, Žigrayová D, Špaglová M. In Situ Gelling Dexamethasone Oromucosal Formulation: Physical Characteristics Influencing Drug Delivery. Gels 2025; 11:26. [PMID: 39851997 PMCID: PMC11765448 DOI: 10.3390/gels11010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
The study focuses on the development of an in situ gelling dexamethasone (DEX) oromucosal formulation designed for the treatment of aphthous stomatitis. Three series of formulations were prepared; a first series containing DEX suspended, a second series containing DEX and, in addition, mint essential oil (EO), and a third series containing EO and DEX solubilized in propylene glycol (PG). In the composition, polymers in the role of mucoadhesive agent were interchanged (hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), methyl cellulose (MC), carboxymethyl cellulose (CMC), and sodium carboxymethyl cellulose (NaCMC). Specifically, DEX was incorporated at a concentration of 0.1% (w/w) in each formulation. The influence of mint EO and DEX solubilization on the physical properties (pH measurements, rheological analysis, swelling ability, and texture analysis) and in vitro drug release was studied. Key findings revealed that HPMC-based formulation containing mint EO and PG exhibited best swelling properties (700 ± 46% after 5 h), adequate adhesiveness and in vitro drug release (34.7 ± 5.9%). Furthermore, the irritation potential assessed via the hen's egg test on the chorioallantoic membrane (HET-CAM) demonstrated low irritancy risk. Finally, Fourier-transform infrared spectroscopy (FT-IR) showed no incompatibility between DEX and excipients. Overall, the research highlights the potential of mucoadhesive systems in improving the therapeutic efficacy of oromucosal drug delivery for managing painful oral lesions.
Collapse
Affiliation(s)
- Daniel Krchňák
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (D.K.); (D.Ž.)
| | - Ľudmila Balážová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, SK-041 81 Kosice, Slovakia;
| | - Michal Hanko
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
| | - Dominika Žigrayová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (D.K.); (D.Ž.)
| | - Miroslava Špaglová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (D.K.); (D.Ž.)
| |
Collapse
|
3
|
Mohite P, Sule S, Pawar A, Alharbi HM, Maitra S, Subramaniyan V, Kumarasamy V, Uti DE, Ogbu CO, Oodo SI, Kumer A, Idowu AO, Okoye ONN. Development and characterization of a self-nano emulsifying drug delivery system (SNEDDS) for Ornidazole to improve solubility and oral bioavailability of BCS class II drugs. Sci Rep 2024; 14:27724. [PMID: 39532892 PMCID: PMC11557912 DOI: 10.1038/s41598-024-73760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
This study aimed to investigate the in vitro performance of self-nanoemulsifying drug delivery systems (SNEDDSs) of Ornidazole (ORD), a poorly water-soluble drug. Self-nanoemulsifying drug delivery systems of ORD were prepared using various oils, non-ionic surfactants, and/or water-soluble co-solvents and assessed visually/by droplet size measurement. Equilibrium solubility of ORD in the anhydrous and diluted SNEDDS was conducted to achieve the maximum drug loading. The in vitro dissolution of SNEDDS was studied to compare the solubility of the representative formulations with API. The results from the characterization and solubility studies showed that SNEDDS formulations were stable with lower droplet sizes and showed higher ORD solubility. From the dissolution studies, it was found that the developed A7-SNEDDS formulation provided a significantly higher rate of ORD release (98.94 ± 0.68 in 1.0 h) compared to API. ORD-loaded SNEDDS formulations could be a potential oral pharmaceutical product with high drug-loading capacity, improved drug dissolution, and enhanced oral bioavailability.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra, India
| | - Shruti Sule
- MES's College of Pharmacy, Sonai, Tal- Newasa, Ahmednagar, Maharashtra, India
| | - Anil Pawar
- MES's College of Pharmacy, Sonai, Tal- Newasa, Ahmednagar, Maharashtra, India
| | - Hanan M Alharbi
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Swastika Maitra
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Vetriselvan Subramaniyan
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Daniel Ejim Uti
- Department of Research Publications, Kampala International University, Main Campus, P. O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | - Celestine O Ogbu
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria
| | - Simon Inedu Oodo
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria
| | - Ajoy Kumer
- Chemistry, IUBAT-International University of Business Agriculture & Technology, Dhaka, Bangladesh
| | - Ayodeji Oluwafemi Idowu
- Centre for Excellence in Functional foods and Gastronomy Faculty of Agro-industry, Prince of Songkla University, Hat Yai, Thailand
| | - Okechukwu N N Okoye
- Department of Industrial Chemistry, College of Science, Evangel University Akaeze, Ebonyi, Nigeria
| |
Collapse
|
4
|
Wang Y, Liu M, Li J, Jiang P, Han D, Zhang H, Xu L, Qiu Y. Preparing a novel baicalin-loaded microemulsion-based gel for transdermal delivery and testing its anti-gout effect. Saudi Pharm J 2024; 32:102100. [PMID: 38812945 PMCID: PMC11135029 DOI: 10.1016/j.jsps.2024.102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024] Open
Abstract
We previously demonstrated that baicalin had efficacy against gouty arthritis (GA) by oral administration. In this paper, a novel baicalin-loaded microemulsion-based gel (B-MEG) was prepared and assessed for the transdermal delivery of baicalin against GA. The preparation method and transdermal capability of B-MEG was screened and optimized using the central composite design, Franz diffusion cell experiments, and the split-split plot design. Skin irritation tests were performed in guinea pigs. The anti-gout effects were evaluated using mice. The optimized B-MEG comprised of 50 % pH 7.4 phosphate buffered saline, 4.48 % ethyl oleate, 31.64 % tween 80, 13.88 % glycerin, 2 % borneol, 0.5 % clove oil and 0.5 % xanthan gum, with a baicalin content of (10.42 ± 0.08) mg/g and particle size of (15.71 ± 0.41) nm. After 12 h, the cumulative amount of baicalin permeated from B-MEG was (672.14 ± 44.11) μg·cm-2. No significant skin irritation was observed following B-MEG application. Compared to the model group, B-MEG groups significantly decreased the rate of auricular swelling (P < 0.01) and number of twists observed in mice (P < 0.01); and also reduced the rate of paw swelling (P < 0.01) and inflammatory cell infiltration in a mouse model of GA. In conclusion, B-MEG represents a promising transdermal carrier for baicalin delivery and can be used as a potential therapy for GA.
Collapse
Affiliation(s)
- Yingzhou Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingxue Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Junjie Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peipei Jiang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Di Han
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongling Zhang
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lingyun Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yinsheng Qiu
- School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
5
|
Mohite P, Joshi A, Singh S, Prajapati B. Solubility enhancement of fexofenadine using self-nano emulsifying drug delivery system for improved biomimetic attributes. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:433-445. [PMID: 37832935 DOI: 10.1016/j.pharma.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Fexofenadine is a poorly water-soluble drug, which limit its bioavailability and ultimately therapeutic efficacy. Liquid self-nano emulsifying drug delivery system (L-SNEDDs) is an approach that can enhance the solubility of fexofenadine by increasing its surface area and reducing the particle size, which increases the rate and extent of drug dissolution. METHOD In this investigation, L-SNEDDs of fexofenadine was made up using surfactants and co-surfactant. The SNEDDS formulation was optimized using a pseudo-ternary phase diagram and characterized. RESULTS The optimized L-SNEDDS incorporated fexofenadine were thermodynamically stable and showed mean droplet size and zeta potential of 155nm and -18mV, respectively unaffected by the media pH. In addition, the viscosity, and refractive index were observed 18.4 and 1.49 cps, respectively for optimized L-SNEDDS fortified fexofenadine. The results of Fourier transform infrared spectroscopy revealed an insignificant interaction between the fexofenadine and excipients. A drug loading efficiency of 94.20% resulted with a complete in vitro drug release in 2h, compared with the pure drug, which demonstrate significant improvement in the efficacy. Moreover, these results signify that on further in vivo assessment L-SNEDDS fortified fexofenadine can indicate improvement in pharmacokinetic and clinical outcome. CONCLUSION Thus, the investigation revealed that, the L-SNEDDs incorporated fexofenadine was most effective with a mixture of surfactant and co-surfactant with improved solubility intend to relieve pain associated with inflammation with single-dose oral administration.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India.
| | - Anjali Joshi
- MES's College of Pharmacy, Sonai, Ahmednagar, Maharashtra, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, 50200 Chiang Mai Thailand; Office of Research Administration, Chiang Mai University, 50200 Chiang Mai Thailand
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012, India
| |
Collapse
|
6
|
Yu HL, Goh CF. Glycols: The ubiquitous solvent for dermal formulations. Eur J Pharm Biopharm 2024; 196:114182. [PMID: 38224756 DOI: 10.1016/j.ejpb.2024.114182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Glycols stand out as one of the most commonly employed safe and effective excipients for pharmaceutical and cosmeceutical products. Their widespread adoption can be attributed to their exceptional solvency characteristics and their ability to interact effectively with skin lipids and keratin for permeation enhancement. Notably, propylene glycol enjoys significant popularity in this regard. Ongoing research endeavours have been dedicated to scrutinising the impact of glycols on dermal drug delivery and shedding light on the intricate mechanisms by which glycols enhance skin permeation. This review aims to mitigate the discordance within the existing literature, assemble a holistic understanding of the impact of glycols on the percutaneous absorption of active compounds and furnish the reader with a profound comprehension of the foundational facets pertaining to their skin permeation enhancement mechanisms, while simultaneously delving deeper into the intricacies of these processes.
Collapse
Affiliation(s)
- Hai Long Yu
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia.
| |
Collapse
|
7
|
Song Y, Chen W, Yin Y, Li J, Wang M, Liu Y, Ren X. Advancements in the Transdermal Drug Delivery Systems Utilizing Microemulsion-based Gels. Curr Pharm Des 2024; 30:2753-2764. [PMID: 39092731 DOI: 10.2174/0113816128305190240718112945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 08/04/2024]
Abstract
Microemulsion gel, as a promising transdermal nanoparticle delivery system, addresses the limitations of microemulsions and enhances their performance in drug delivery and release. This article aims to discuss the advantages of microemulsion gel, including improved drug bioavailability, reduced drug irritation, enhanced drug penetration and skin adhesion, and increased antimicrobial properties. It explores the methods for selecting microemulsion formulations and the general processes of microemulsion preparation, as well as commonly used oil phases, surfactants, and co-surfactants. Additionally, the biomedical applications of microemulsion gel in treating conditions, such as acne and psoriasis, are also discussed. Overall, this article elucidates the significant potential of microemulsion gel in topical drug delivery, providing insights into future development and clinical applications.
Collapse
Affiliation(s)
- Yongjian Song
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Yin
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiunian Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meng Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
8
|
Release of Tretinoin Solubilized in Microemulsion from Carbopol and Xanthan Gel: In Vitro versus Ex Vivo Permeation Study. Polymers (Basel) 2023; 15:polym15020329. [PMID: 36679211 PMCID: PMC9862831 DOI: 10.3390/polym15020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Tretinoin (TRE) is, for its anti-comedogenic and comedolytic activity, widely used in the topical treatment of acne vulgaris. The effect lies in the regulation of sebum production and collagen synthesis. The study is devoted to the formulation of dermal gels containing TRE using microemulsion as the drug solubilizer. METHODS The aim was to evaluate the effect of the reference microemulsion (ME) and lecithin-containing microemulsion (MEL) on the release of TRE through the synthetic membrane (in vitro) and the pig's ear skin (ex vivo) through the Franz cell diffusion method. Subsequently, after an ex vivo study, the amount of the drug in the skin influenced by the applied formulation was determined. In addition, the impact of ME on the microscopic structure, texture, and rheological properties of gels was evaluated. RESULTS On the basis of the analysis of texture, rheological properties, and drug release studies, Carbopol formulations appear to be more appropriate and stable. Considering the synthetic membrane as a stratum corneum, the Carbopol gel penetrated about 2.5-higher amounts of TRE compared to the Xanthan gel. In turn, ex vivo studies suggest that MEL slows the drug transfer to the dissolution medium, simulating absorption into the blood, which is a desirable effect in local treatment. The drug retention study proved the highest amounts of TRE in the skin to which microemulsion-Carbopol formulations were applied. CONCLUSION The results confirm the benefit of TRE solubilization in ME due to its bioavailability from the tested dermal formulations.
Collapse
|
9
|
Effect of Penetration Enhancers on Transdermal Delivery of Oxcarbazepine, an Antiepileptic Drug Using Microemulsions. Pharmaceutics 2023; 15:pharmaceutics15010183. [PMID: 36678811 PMCID: PMC9864939 DOI: 10.3390/pharmaceutics15010183] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/19/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Oxcarbazepine (OXC) is an anticonvulsant drug, indicated for the treatment of the neurological disorder, epilepsy. The objective of the present study was to evaluate the transdermal delivery of OXC from microemulsions using different penetration enhancers. Transcutol® P (TRC), oleic acid (OA), cineole (cin), Labrasol (LS), Tween 80 (T80) and N-Methyl-Pyrrolidone (NMP) were used as penetration enhancers as well as microemulsion components. Simple formulations of OXC in propylene glycol (PG) incorporating various penetration enhancers and combination of penetration enhancers were also evaluated for transdermal delivery. Drug delivery and penetration enhancement were studied using human cadaver skin on Franz diffusion cells. The results showed that all penetration enhancers improved the rate of permeation of OXC compared to the control. The flux of drug delivery from the various formulations was found to be, in decreasing order, cin > OA + TRC > NMP > TRC > OA. Overall, microemulsions prepared using cineole, Tween 80 and Transcutol® P (TRC) were shown to be provide the best penetration enhancement for OXC.
Collapse
|
10
|
Sevinç-Özakar R, Seyret E, Özakar E, Adıgüzel MC. Nanoemulsion-Based Hydrogels and Organogels Containing Propolis and Dexpanthenol: Preparation, Characterization, and Comparative Evaluation of Stability, Antimicrobial, and Cytotoxic Properties. Gels 2022; 8:578. [PMID: 36135290 PMCID: PMC9498717 DOI: 10.3390/gels8090578] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Recently, nanoemulsion-based gels have become very popular for dermal drug delivery, overcoming the disadvantages of conventional semi-solid drug forms. The aim of this study is to prepare and characterize nanoemulsion-based hydrogels and organogels containing combined propolis and dexpanthenol, and to compare their stability, antimicrobial, and cytotoxicity properties. Within the scope of characterization studies, organoleptic properties, drug content, morphology, pH, gel-sol conversion temperature, spreadability, viscosity, FT-IR, and release properties were evaluated in hydrogels and organogels. The characterization studies carried out were subjected to short-term stability evaluation at room temperature and refrigerator for 3 months. While no phase separation was observed in any of the formulations kept in the refrigerator, phase separation was observed in four formulations kept at room temperature. The release study successfully obtained an extended release for propolis and dexpanthenol. In the antimicrobial susceptibility study, Hydrogel 1 showed activity against S. aureus, while Organogel 1 showed activity against both S. aureus and S. epidermidis. In the cytotoxicity study against HDFa cells, both Hydrogel 1 and Organogel 1 were found to be nontoxic at low doses. These hydrogels and organogels, which contain propolis and dexpanthenol in combination for the first time, are promising systems that can be used in wound and burn models in the future.
Collapse
Affiliation(s)
- Rukiye Sevinç-Özakar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Turkey
| | - Emrah Seyret
- Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Turkey
| | - Emrah Özakar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Turkey
| | - Mehmet Cemal Adıgüzel
- Department of Microbiology, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
11
|
Gutiérrez-Méndez N, Chavez-Garay DR, Leal-Ramos MY. Lecithins: A comprehensive review of their properties and their use in formulating microemulsions. J Food Biochem 2022; 46:e14157. [PMID: 35355280 DOI: 10.1111/jfbc.14157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022]
Abstract
Lecithins are a phospholipid-rich mixture recovered from the degumming process of crude vegetable oils. Since the nineteenth century, this by-product of oil processing has been used as a food and pharmaceutical ingredient. Lecithins' popularity as an ingredient in the pharmaceutical and food industries arises from their particular properties, such as their hydrophilic-lipophilic balance, critical micellar concentration, and assembly properties. However, there is limited knowledge of the use of lecithins to formulate pharmaceutical- and food-grade microemulsions. Unlike conventional emulsions, microemulsions are thermodynamically stable systems that offer long-term stability. Besides, microemulsions show nano-sized droplets, transparency, ease of preparation and scale-up, and do not require expensive equipment. This review aims to provide a comprehensive overview of lecithins, their properties, and their use in formulating microemulsions, a promising method to incorporate, protect, and deliver bioactive compounds in pharmaceutical and food products. PRACTICAL APPLICATIONS: Lecithins are a phospholipid-rich mixture recovered from the degumming process of crude vegetable oils. Since the nineteenth century, this by-product of oil processing has been used as a food ingredient. Lecithin phospholipids are commonly used as emulsifier agents in the food and pharmaceutical industries because of their particular properties. However, there is limited knowledge of the use of lecithins to formulate pharmaceutical- or food-grade microemulsions. Unlike conventional emulsions, microemulsions are stable systems that offer long-term stability, nano-sized droplets, transparency, ease of preparation and scale-up, and do not require expensive equipment. This review aims to provide a comprehensive overview of lecithins, their properties, and their use in formulating microemulsions, a promising method to incorporate, protect, and deliver bioactive compounds such as vitamins, flavors, antioxidants, nutrients, colors, antimicrobials, and polyphenols.
Collapse
|
12
|
Comparative Study of Polysaccharide-Based Hydrogels: Rheological and Texture Properties and Ibuprofen Release. Gels 2022; 8:gels8030168. [PMID: 35323281 PMCID: PMC8951473 DOI: 10.3390/gels8030168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Polysaccharides are attractive gelling agents in pharmacy due to their safety, biocompatibility, biodegradability, relatively easy way of preparation, and low price. Due to their variable physical-chemical properties, polysaccharides have potentialities to be used for designing new drug delivery systems for controlled drug release. In this comparative study, rheological and texture properties as well as the in vitro release of model drug ibuprofen (IBU) with 11 polysaccharide-based hydrogels were investigated. The in vitro release of IBU significantly differed between (i) neutral (hydroxy/alkylcelluloses), (ii) anionic (carboxyalkylcellulose and its sodium salt, tragacanth, carrageenan, xanthan gum), and (iii) cationic (chitosans) hydrogels due to different contribution of provided interactions and viscosity within the hydrogel groups. The drug release kinetics of each hydrogel system was evaluated for five kinetic models. Several combinations of cationic hydrogels with neutral or anionic ones were performed to illustrate possibilities of providing modified IBU release profiles. In this context, chitosan was presented as an effective modifier of diffusion profiles for negatively charged drugs formulated into combined polymeric systems, providing their prolonged release. The most appropriate hydrogel for the topical application (i.e., providing favorable rheological and texture properties along with the highest drug release) was selected from a studied series of polysaccharide-based hydrogels.
Collapse
|
13
|
Anicescu MC, Dinu-Pîrvu CE, Talianu MT, Ghica MV, Anuța V, Prisada RM, Nicoară AC, Popa L. Insights from a Box-Behnken Optimization Study of Microemulsions with Salicylic Acid for Acne Therapy. Pharmaceutics 2022; 14:174. [PMID: 35057071 PMCID: PMC8778434 DOI: 10.3390/pharmaceutics14010174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/11/2022] Open
Abstract
The present study brings to attention a method to develop salicylic acid-based oil in water (O/W) microemulsions using a tensioactive system based on Tween 80, lecithin, and propylene glycol (PG), enriched with a vegetable oat oil phase and hyaluronic acid. The systems were physically characterized and the Quality by design approach was applied to optimize the attributes of microemulsions using Box-Behnken modeling, combined with response surface methodology. For this purpose, a 33 fractional factorial design was selected. The effect of independent variables namely X1: Tween 80/PG (%), X2: Lecithin (%), X3: Oil phase (%) was analyzed considering their impact upon the internal structure and evaluated parameters chosen as dependent factors: viscosity, mean droplet size, and work of adhesion. A high viscosity, a low droplet size, an adequate wettability-with a reduced mechanical work-and clarity were considered as desirable for the optimal systems. It was found that the optimal microemulsion which complied with the established conditions was based on: Tween 80/PG 40%, lecithin 0.3%, oat oil 2%, salicylic acid 0.5%, hyaluronic acid 1%, and water 56.2%. The response surface methodology was considered an appropriate tool to explain the impact of formulation factors on the physical properties of microemulsions, offering a complex pattern in the assessment of stability and quality attributes for the optimized formulation.
Collapse
Affiliation(s)
- Maria-Cristina Anicescu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Marina-Theodora Talianu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Răzvan-Mihai Prisada
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Anca Cecilia Nicoară
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| |
Collapse
|
14
|
Zhang J, Jiao J, Niu M, Gao X, Zhang G, Yu H, Yang X, Liu L. Ten Years of Knowledge of Nano-Carrier Based Drug Delivery Systems in Ophthalmology: Current Evidence, Challenges, and Future Prospective. Int J Nanomedicine 2021; 16:6497-6530. [PMID: 34588777 PMCID: PMC8473849 DOI: 10.2147/ijn.s329831] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
The complex drug delivery barrier in the eye reduces the bioavailability of many drugs, resulting in poor therapeutic effects. It is necessary to investigate new drugs through appropriate delivery routes and vehicles. Nanotechnology has utilized various nano-carriers to develop potential ocular drug delivery techniques that interact with the ocular mucosa, prolong the retention time of drugs in the eye, and increase permeability. Additionally, nano-carriers such as liposomes, nanoparticles, nano-suspensions, nano-micelles, and nano-emulsions have grown in popularity as an effective theranostic application to combat different microbial superbugs. In this review, we summarize the nano-carrier based drug delivery system developments over the last decade, particularly review the biology, methodology, approaches, and clinical applications of nano-carrier based drug delivery system in the field of ocular therapeutics. Furthermore, this review addresses upcoming challenges, and provides an outlook on potential future trends of nano-carrier-based drug delivery approaches in ophthalmology, and hopes to eventually provide successful applications for treating ocular diseases.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, 261041, People's Republic of China
| | - Jinghua Jiao
- Department of Anesthesiology, Central Hospital, Shenyang Medical College, Shenyang, 110024, People's Republic of China
| | - Meng Niu
- Department of Radiology, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xiaotong Gao
- Department of Endocrinology and Metabolism and the Institute of Endocrinology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Guisen Zhang
- Department of Retina, Inner Mongolia Chaoju Eye Hospital, Hohhot, 010050, People's Republic of China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences; School of Medicine, South China University of Technology, Guangzhou, 510120, People's Republic of China
| | - Xiaohong Yang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences; School of Medicine, South China University of Technology, Guangzhou, 510120, People's Republic of China
| | - Lei Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences; School of Medicine, South China University of Technology, Guangzhou, 510120, People's Republic of China.,Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|