1
|
Zaid Alkilani A, Sharaire Z, Hamed R, Basheer HA. Transdermal Delivery System of Doxycycline-Loaded Niosomal Gels: Toward Enhancing Doxycycline Stability. ACS OMEGA 2024; 9:33542-33556. [PMID: 39130600 PMCID: PMC11307314 DOI: 10.1021/acsomega.4c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 08/13/2024]
Abstract
Doxycycline (DOX) is an antimicrobial agent that is susceptible to photosensitivity and thermal degradation. It addition, it causes gastrointestinal side effects when taken orally. Therefore, the development of alternative formulations is necessary to improve drug stability and promote patient compliance. The aim of the present study was to encapsulate DOX in niosomes as a nanocarrier to deliver DOX transdermally and enhance its stability in the formulation. DOX niosomes were prepared using nonionic surfactants, cholesterol, and dihexadecyl phosphate (DCP). After that, niosomes were characterized in terms of practical size (PS), zeta potential (ZP), morphology, and entrapment efficacy (EE%). DOX niosomal gels were then prepared using Carbopol and penetration enhancers (poly(ethylene glycol) 400 (PEG 400) and propylene glycol (PG)). The flux of DOX from the optimized formula was 322.86 μg/cm2/h over 5 h, which equates to 71.2% of DOX. Furthermore, neither the DOX niosomal gel (D3) nor the comparable blank niosomal gel had a negative influence on human dermal fibroblast (HDF) cells. The findings of the antimicrobial effectiveness of DOX niosomes indicated that the niosomal formulation improved the antibacterial activity of DOX against E. coli. Permeation studies demonstrated significantly higher DOX permeation when the niosomal gel was applied to rat skin, compared to the conventional gel. Permeability parameters such as flux and the permeability coefficient increased more than 10-fold using the niosomal gels compared with those of conventional gels. In conclusion, a new niosomal gel formulation could serve as an effective alternative for the commercially available form of DOX.
Collapse
Affiliation(s)
- Ahlam Zaid Alkilani
- Department
of Pharmacy, Faculty of Pharmacy, Zarqa
University, Zarqa 13110, Jordan
| | - Zaina Sharaire
- Department
of Pharmacy, Faculty of Pharmacy, Zarqa
University, Zarqa 13110, Jordan
| | - Rania Hamed
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, Amman 11733, Jordan
| | - Haneen A. Basheer
- Department
of Pharmacy, Faculty of Pharmacy, Zarqa
University, Zarqa 13110, Jordan
| |
Collapse
|
2
|
Stan D, Ruta LL, Bocancia-Mateescu LA, Mirica AC, Stan D, Micutz M, Brincoveanu O, Enciu AM, Codrici E, Popescu ID, Popa ML, Rotaru F, Tanase C. Formulation and Comprehensive Evaluation of Biohybrid Hydrogel Membranes Containing Doxycycline or Silver Nanoparticles. Pharmaceutics 2023; 15:2696. [PMID: 38140037 PMCID: PMC10747233 DOI: 10.3390/pharmaceutics15122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Complicated wounds often require specialized medical treatments, and hydrogels have emerged as a popular choice for wound dressings in such cases due to their unique properties and the ability to incorporate and release therapeutic agents. Our focus was to develop and characterize a new optimized formula for biohybrid hydrogel membranes, which combine natural and synthetic polymers, bioactive natural compounds, like collagen and hyaluronic acid, and pharmacologically active substances (doxycycline or npAg). Dynamic (oscillatory) rheometry confirmed the strong gel-like properties of the obtained hydrogel membranes. Samples containing low-dose DOXY showed a swelling index of 285.68 ± 6.99%, a degradation rate of 71.6 ± 0.91% at 20 h, and achieved a cumulative drug release of approximately 90% at pH 7.4 and 80% at pH 8.3 within 12 h. The addition of npAg influenced the physical properties of the hydrogel membranes. Furthermore, the samples containing DOXY demonstrated exceptional antimicrobial efficacy against seven selected bacterial strains commonly associated with wound infections and complications. Biocompatibility assessments revealed that the samples exhibited over 80% cell viability. However, the addition of smaller-sized nanoparticles led to decreased cellular viability. The obtained biohybrid hydrogel membranes show favorable properties that render them suitable for application as wound dressings.
Collapse
Affiliation(s)
- Diana Stan
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
- Doctoral School of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Lavinia Liliana Ruta
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
- Department of Inorganic, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Str., 050663 Bucharest, Romania
| | | | - Andreea-Cristina Mirica
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
| | - Dana Stan
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
| | - Marin Micutz
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania;
| | - Oana Brincoveanu
- National Institute for R&D in Microtechnology, 077190 Bucharest, Romania;
- Research Institute, The University of Bucharest, 060102 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Elena Codrici
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
| | - Ionela Daniela Popescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
| | - Maria Linda Popa
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Flaviana Rotaru
- Polytechnic University of Bucharest, Splaiul Independenței 54, 030167 Bucharest, Romania;
- Rohealth—Health and Bioeconomy Cluster, Calea Griviţei 6-8, 010731 Bucharest, Romania
- Frontier Management Consulting, Calea Griviţei6-8, 010731 Bucharest, Romania
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
- Department of Cell Biology and Clinical Biochemistry, Titu Maiorescu University, 031593 Bucharest, Romania
| |
Collapse
|
3
|
Dinte E, Muntean DM, Andrei V, Boșca BA, Dudescu CM, Barbu-Tudoran L, Borodi G, Andrei S, Gal AF, Rus V, Gherman LM, Cadar O, Barabas R, Niculae M, Ilea A. In Vitro and In Vivo Characterisation of a Mucoadhesive Buccal Film Loaded with Doxycycline Hyclate for Topical Application in Periodontitis. Pharmaceutics 2023; 15:pharmaceutics15020580. [PMID: 36839899 PMCID: PMC9963859 DOI: 10.3390/pharmaceutics15020580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Mucoadhesive films loaded with doxycycline hyclate (Doxy Hyc), consisting of mixtures of hydroxypropylmethyl cellulose (HPMC) E3, K4 and polyacrylic acid (Carbopol 940), were prepared by casting method, aiming to design a formulation intended for application in the oral cavity. The obtained film formulations exhibited a Doxy Hyc content between 7.52 ± 0.42 and 7.83 ± 0.41%, which had adequate mechanical properties for application in the oral cavity and pH values in the tolerance range. The x-ray diffraction studies highlighted the amorphisation of Doxy Hyc in the preparation process and the antibiotic particles present on the surface of the films, identified in the TEM images, which ensured a burst release effect in the first 15 min of the in vitro dissolution studies, after which Doxy Hyc was released by diffusion, the data presenting a good correlation with the Peppas model, n < 0.5. The formulation F1, consisting of HPMC K4 combined with C940 in a ratio of 5:3, the most performing in vitro, was tested in vivo in experimentally-induced periodontitis and demonstrated its effectiveness in improving the clinical parameters and reducing the salivary levels of matrix metalloproteinase-8 (MMP-8). The prepared Doxy Hyc loaded mucoadhesive buccal film could be used as an adjuvant for the local treatment of periodontitis, ensuring prolonged release of the antibiotic after topical application.
Collapse
Affiliation(s)
- Elena Dinte
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Dana Maria Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Vlad Andrei
- Department of Oral Rehabilitation, Faculty of Dentistry, ”Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Bianca Adina Boșca
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cristian Mircea Dudescu
- Department of Mechanical Engineering, Faculty of Automotive, Mechatronics and Mechanical Engineering, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Gheorghe Borodi
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Sanda Andrei
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Adrian Florin Gal
- Department of Cell Biology, Histology and Embryology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Vasile Rus
- Department of Cell Biology, Histology and Embryology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Luciana-Mădălina Gherman
- Experimental Centre of University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 400293 Cluj-Napoca, Romania
| | - Reka Barabas
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, 400028 Cluj-Napoca, Romania
| | - Mihaela Niculae
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Faculty of Dentistry, ”Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Suksaeree J, Chaichawawut B, Srichan M, Tanaboonsuthi N, Monton C, Maneewattanapinyo P, Pichayakorn W. Applying design of experiments (DoE) on the properties of buccal film for nicotine delivery. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Abstract
Design of experiments is used to optimize ratios between deproteinized natural rubber latex, Eudragit® NM 30 D, and pectin for nicotine buccal film with dependent variables as moisture content, moisture uptake, and swelling index in simulated saliva 3 and 5 h. Mathematical models were linear for moisture content and moisture uptake, while swelling index in simulated saliva 3 and 5 h was a quadratic model. Optimized polymer ratio was 0.319:0.362:0.319, respectively. Experimental values were 13.17 ± 0.92%, 3.96 ± 0.84%, 112.58 ± 22.63%, and 124.69 ± 8.01% for dependent variables, respectively. The buccal film showed high swelling at pH 7 and swelling–deswelling behaviors in a water/ethanol environment. The surface pH, weight, and thickness were 8.11, 63.28 ± 6.18 mg, and 219.87 ± 44.28 µm, respectively. Nicotine content was found as 10.22 ± 0.46 mg/4 cm2. Maximum cumulative nicotine release was 9.82 ± 0.94 mg/4 cm2. Kinetic model fitted to the Korsmeyer-Peppas model and release exponent was 0.36, representing that release mechanism was controlled by Fickian diffusion release.
Collapse
Affiliation(s)
- Jirapornchai Suksaeree
- Department of Pharmaceutical Chemistry, College of Pharmacy, Rangsit University , Muang , Pathum Thani 12000 , Thailand
| | - Benjarut Chaichawawut
- Department of Pharmaceutical Chemistry, College of Pharmacy, Rangsit University , Muang , Pathum Thani 12000 , Thailand
| | - Muntira Srichan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Rangsit University , Muang , Pathum Thani 12000 , Thailand
| | - Noppamon Tanaboonsuthi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Rangsit University , Muang , Pathum Thani 12000 , Thailand
| | - Chaowalit Monton
- Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University , Pathum Thani 12000 , Thailand
| | - Pattwat Maneewattanapinyo
- Department of Pharmaceutical Chemistry, College of Pharmacy, Rangsit University , Muang , Pathum Thani 12000 , Thailand
| | - Wiwat Pichayakorn
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University , Hat-Yai , Songkhla 90112 , Thailand
| |
Collapse
|